Начертательная геометрия

Начертательная геометрия
Виды проецирования
Проецирование точки на две плоскости проекций
Натуральная величина отрезка прямой
Взаимное положение двух прямых
Плоскость
Прямая и точка в плоскости
Параллельность плоскостей
Параллельность прямой и плоскости
Основные задачи замены плоскостей проекций
ОБРАЗОВАНИЕ И ИЗОБРАЖЕНИЕ ПОВЕРХНОСТЕЙ
Цилиндроид, коноид, косая плоскость.
Пересечение поверхностей плоскостью
Прямой круговой усечённый конус
Сущность аксонометрического проецирования
Косоугольная фронтальная диметрия
 
Французский стиль в русской архитектуре
Архитектура барокко во Франции
Строительство королевского дворца Лувра
павильон версальского парка — Малый Трианон
Рококо
Главный корпус Педагогического института (Герцена)
Ампир
Русский ампир в архитектуре
Величайший из зодчих России Растрелли
здание Академии художеств в Петербурге
Французский классицизм в Москве VII-XVIII
Московский Воспитательный дом
Архитектура Таганрога
Билеты по истории искусства
Архитектура Англии
Архитектура Франции
Архитектура Германии
Антуан Жан Гро
Романтизм

ПЕЙЗАЖ В АНГЛИИ

Немецкий романтизм
Филипп Отто Рунге
Эжен Делакруа
Барбизонская школа
Ренуар Пьер Огюст
Баухауз
художники Шлеммер, Пауль Клее, Георг Мухе, Лион Файнингер.
Японское жилище
Архитектура

Архитектура России конца XIX начала XX века

Архитектура и скульптура готики
Архитектура Франция
Франция — родина готических соборов.
Готический стиль в Германии
Клаус Слютер Пророк Даниил Колодец пророков
Американский дизайн и архитектура
идеи Готфрида Земпера
Влияние современного искусства на дизайн и архитектуру ХХ века
Русский авангард
Авангардизм
Работы Малевича и Лисицкого
объединение “Синий всадник”
Творчество Татлина, Родченко и Степановой
Развитие архитектуры в первые годы Советской власти
 

Содержание и задачи курса начертательной геометрии.

Трудно указать такой вид человеческой деятельности, где, решая ту или иную техническую или нетехническую задачу, не приходилось бы прибегать к помощи изображений машин и механизмов, планов строений и т.п.

К. Маркс указывал, что всякий процесс труда человека заканчивается результатом, который уже в начале этого процесса имелся в его представлении: "Паук совершает операции, напоминающие операции ткача, и пчела постройкой своих восковых ячеек посрамляет некоторых людей - архитекторов. Но самый плохой архитектор от наилучшей пчелы с самого начала отличается тем, что, прежде чем строить ячейку из воска, он уже построил её в своей голове".

Сколь широка и многогранна деятельность человека, столь и различны требования, предъявляемые к форме и содержанию изображений. Одни из них должны производить на глаз человека такое же впечатление, какое производит и сам изображаемый предмет, иначе говоря, изображение должно обладать достаточной наглядностью. В другом случае изображение должно быть, в первую очередь, геометрически равноценно оригиналу, оно должно давать полную геометрическую и размерную характеристику изображаемого предмета. Этому требованию должен отвечать, например, всякий машиностроительный чертёж.

Наконец, к изображению могут быть предъявлены оба указанных условия одновременно - наглядность изображения должна сочетаться с геометрической равноценностью оригиналу.

Изображения различных предметов и объектов не являются самоцелью, они дают возможность решать инженеру по ним различные технические задачи.

Изучение курса "Черчение" Нанесение размеров на чертежах деталей

Однако не всякое изображение может быть использовано для решения технических задач. Для этого оно, в первую очередь, должно быть геометрически равноценно изображаемому объекту, то есть, построено по определённому геометрическому закону. Вопросами исследования геометрических основ построения изображений предметов на плоскости, вопросами решения пространственных геометрических задач при помощи изображений занимается одна из ветвей геометрии - НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ.

Начертательная геометрия относится к числу математических наук. Для неё характерна та общность методов, которая свойственна каждой математической науке. Методы начертательной геометрии находят самое широкое применение в объектах изучения самой различной природы: в механике, архитектуре и строительстве, химии, геодезии, геологии, кристаллографии и т.д.

Но наибольшее значение и применение методы начертательной геометрии нашли в различных областях техники при составлении различного вида технических чертежей: машиностроительных, строительных, различного рода карт и т.д. Начертательная геометрия, таким образом, является звеном, соединяющим математические науки с техническими.

Начертательная геометрия входит в группу общетехнических дисциплин, составляющих основу всякого инженерного образования. Она учит грамотно владеть выразительным техническим языком - языком чертежа, умению составлять и свободно читать чертежи, решать при помощи чертежей различные инженерно-технические задачи.

Кроме того, изучение начертательной геометрии способствует развитию у студентов пространственных представлений и пространственного воображения - качеств, характеризующих высокий уровень инженерного мышления и необходимых для решения прикладных задач.

В процессе изучения начертательной геометрии достигаются и другие цели, расширяется общенаучный кругозор студентов, развиваются навыки логического мышления, внимательность, наблюдательность, аккуратность и другие качества, развитие которых является одной из задач обучения и воспитания в высшей технической школе.

Предметом начертательной геометрии (в узком смысле) является изучение теории построения плоских моделей пространств и теории и практики решения пространственных задач на таких плоских моделях.

Цели курса:

Научить пространственно мыслить и отображать на плоскости трёхмерные геометрические образы (фигуры).

Развить способность мысленного восприятия пространственного геометрического образа по его отображению на плоскости, т.е. научить читать чертёж.
(Таким образом, мы решаем две задачи: прямую и обратную. Объёмный предмет отображаем на плоскости - прямая задача. По плоскому чертежу представляем объёмную форму предмета - обратная задача. Прочесть чертёж - это представить себе пространственное изображение предмета.)

Сообщить знания о методах решения на плоскости пространственных метрических и позиционных задач.

Роль русских и советских учёных в разработке и развитии методов изображений.

Сведения и приёмы построений, обуславливаемые потребностью в плоских изображениях пространственных форм, накапливались постепенно с древних времён. В течение продолжительного периода плоские изображения выполнялись как изображения наглядные. С развитием техники первостепенное значение приобрёл вопрос о применении метода, обеспечивающего точность и удобоизмеримость изображений, т.е. возможность точно установить место каждой точки изображения относительно других точек или плоскостей и путём простых приёмов определить размеры отрезков линий и фигур. Постепенно накопившиеся отдельные правила и приёмы построения таких изображений были приведены в систему и развиты в труде французского учёного Монжа, изданном в 1799 году. Изложенный Гаспаром Монжем (1746-1818) метод - метод ортогонального проецирования - обеспечивал выразительность, точность и удобоизмеримость изображений предметов на плоскости, был и остаётся основным методом составления технических чертежей.

Чертёж - язык инженера, начертательная геометрия - грамматика этого языка.

В нашей стране начертательную геометрию начали преподавать с 1810 года в ЛИЖТе - первом ВУЗе страны, только что организованном. Лекции там читал Я.А. Севастьянов (1796-1849), с именем которого связано появление первого оригинального труда под названием "Основания начертательной геометрии" (1821 г.), в основном посвящённого изложению метода Монжа.

Крупный след в развитии начертательной геометрии в России в XIX веке оставили Н.И. Макаров (1824-1904) (адмирал Макаров, погибший в Порт-Артуре) и В.И. Курдюнов (1853-1904).

Если начертательная геометрия как предмет возникла из нужд практики и в середине XIX века она расширила свои разделы, то к началу XX века аналитические методы, применённые в начертательной геометрии, вышли на первый план, точность графических методов не удовлетворялась и начертательная геометрия пошла на убыль. Последними книгами были книги Н.А. Рышина (1877-1942) и В.О. Гордона.

С появлением трудов Н.Ф. Четверухина (1891-1973) начертательная геометрия была выведена из застоя. Н.Ф. Четверухин стал рассматривать начертательную геометрию как самостоятельную науку (не связанную с черчением). Он первый увидел, что методами начертательной геометрии можно решать сложные конструктивные задачи. Появилась "Прикладная геометрия" и начался её расцвет. За период с конца 40-х годов начертательная геометрия развивалась и расширялась. В науке большая роль принадлежит И.И. Котову (1905-1975) и его ученикам. После смерти Н.Ф. Четверухина начался процесс сокращения часов по начертательной геометрии и произошел застой. В 1982 г. вопрос в ВАКе был решён положительно и предмет восстановлен.

На главную