Начертательная геометрия

Начертательная геометрия
Виды проецирования
Проецирование точки на две плоскости проекций
Натуральная величина отрезка прямой
Взаимное положение двух прямых
Плоскость
Прямая и точка в плоскости
Параллельность плоскостей
Параллельность прямой и плоскости
Основные задачи замены плоскостей проекций
ОБРАЗОВАНИЕ И ИЗОБРАЖЕНИЕ ПОВЕРХНОСТЕЙ
Цилиндроид, коноид, косая плоскость.
Пересечение поверхностей плоскостью
Прямой круговой усечённый конус
Сущность аксонометрического проецирования
Косоугольная фронтальная диметрия
 
Французский стиль в русской архитектуре
Архитектура барокко во Франции
Строительство королевского дворца Лувра
павильон версальского парка — Малый Трианон
Рококо
Главный корпус Педагогического института (Герцена)
Ампир
Русский ампир в архитектуре
Величайший из зодчих России Растрелли
здание Академии художеств в Петербурге
Французский классицизм в Москве VII-XVIII
Московский Воспитательный дом
Архитектура Таганрога
Билеты по истории искусства
Архитектура Англии
Архитектура Франции
Архитектура Германии
Антуан Жан Гро
Романтизм

ПЕЙЗАЖ В АНГЛИИ

Немецкий романтизм
Филипп Отто Рунге
Эжен Делакруа
Барбизонская школа
Ренуар Пьер Огюст
Баухауз
художники Шлеммер, Пауль Клее, Георг Мухе, Лион Файнингер.
Японское жилище
Архитектура

Архитектура России конца XIX начала XX века

Архитектура и скульптура готики
Архитектура Франция
Франция — родина готических соборов.
Готический стиль в Германии
Клаус Слютер Пророк Даниил Колодец пророков
Американский дизайн и архитектура
идеи Готфрида Земпера
Влияние современного искусства на дизайн и архитектуру ХХ века
Русский авангард
Авангардизм
Работы Малевича и Лисицкого
объединение “Синий всадник”
Творчество Татлина, Родченко и Степановой
Развитие архитектуры в первые годы Советской власти
 

МЕТОДЫ ПРЕОБРАЗОВАНИЯ ОРТОГОНАЛЬНЫХ ПРОЕКЦИЙ

Пример: Даны фронтально-проецирующая плоскость S и точка A. Нужно найти расстояние от точки A до плоскости S.

Рис.1

Решение задачи получается более простым, если геометрические фигуры занимают частное положение относительно плоскостей проекций.

Перевод геометрической фигуры из общего положения в частное может быть осуществлён двумя путями:

Перемещением плоскостей проекций в положение, относительно которых плоские фигуры занимали бы частное положение (были бы параллельны или перпендикулярны плоскостям проекций).

Перемещением плоской фигуры в пространстве в частное положение относительно плоскостей проекций, причём положение плоскостей проекций при этом остаётся неизменным.

Первый путь лежит в основе метода замены плоскостей проекций, а второй - в основе следующих методов:

Вращение вокруг линии уровня.

Вращение вокруг проецирующих прямых.

Методы преобразования проекций позволяют значительно упростить решение метрических и некоторых позиционных задач.

1. Метод замены плоскостей проекций.

Этот метод заключается в том, что заданные в пространстве геометрические фигуры не изменяют своего положения, а в системе плоскостей проекций V и H последовательно заменяют одну, две и более плоскостей проекций. При этом вновь введёная плоскость проекций должна быть перпендикулярна остающейся плоскости проекций, а относительно плоских геометрических фигур она должна быть поставлена в такое положение, чтобы эти фигуры были параллельны или перпендикулярны по отношению к ней.

Переход от некоторой системы плоскостей проекций к новой может быть осуществлён по одной из схем:

1.
2.

Схемы показывают, что одновременно меняется только одна плоскость проекций V (или H), другая плоскость H (или V) остаётся неизменной.

1.1 Замена фронтальной плоскости проекций.

Пусть в системе плоскостей дана точка А и указаны её проекции А1 А2.

Проследим как изменится положение проекций точки А, если плоскость V заменить новой плоскостью V1 (V1H).

Рис.2

Плоскость V1 пересекается с плоскостью Н по прямой x1, которая определяет новую ось проекций. Положение горизонтальной проекции А1 точки А остаётся без изменений, так как точка А и плоскость Н не меняли своего положения в пространстве.

Для нахождения нофой фронтальной проекции точки А - А4 достаточно спроецировать ортогонально точку А на плоскость V1. Расстояние новой фронтальной проекции А4 точки А от новой оси x1 равно расстоянию от старой фронтальной проекции А2 точки А до старой оси х.

|А4х1|=|А2х|=|АА1|.

При построении комплексного чертежа новая плоскость проекций V1 вращением вокруг новой оси х1 совмещается с остающейся плоскостью Н. Направление вращения не влияет на результат решения задачи. Вращение следует делать так, чтобы новые проекции не накладывались на старые.

Замена горизонтальной плоскости проекций.

Замена горизонтальной плоскости проекций Н новой плоскостью Н1 и построение новых проекций точки А в системе осуществляется аналогично рассмотренному случаю. Теперь без изменения остаётся фронтальная проекция точки, а для нахождения новой горизонтальной проекции А4 точки А необходимо из старой фронтальной проекции точки опустить перпендикуляр (провести линию связи) на новую ось х1 и отложить на нём от точки пересечения с осью х1 отрезок равный расстоянию старой горизонтальной проекции от старой оси х.

|А4х1|=|А1х|=|АА2|.

Рис.4

На главную