Начертательная геометрия

МЕТОДЫ ПРЕОБРАЗОВАНИЯ ОРТОГОНАЛЬНЫХ ПРОЕКЦИЙ

Пример: Даны фронтально-проецирующая плоскость S и точка A. Нужно найти расстояние от точки A до плоскости S.

Рис.1

Решение задачи получается более простым, если геометрические фигуры занимают частное положение относительно плоскостей проекций.

Перевод геометрической фигуры из общего положения в частное может быть осуществлён двумя путями:

Перемещением плоскостей проекций в положение, относительно которых плоские фигуры занимали бы частное положение (были бы параллельны или перпендикулярны плоскостям проекций).

Перемещением плоской фигуры в пространстве в частное положение относительно плоскостей проекций, причём положение плоскостей проекций при этом остаётся неизменным.

Первый путь лежит в основе метода замены плоскостей проекций, а второй - в основе следующих методов:

Вращение вокруг линии уровня.

Вращение вокруг проецирующих прямых.

Методы преобразования проекций позволяют значительно упростить решение метрических и некоторых позиционных задач.

1. Метод замены плоскостей проекций.

Этот метод заключается в том, что заданные в пространстве геометрические фигуры не изменяют своего положения, а в системе плоскостей проекций V и H последовательно заменяют одну, две и более плоскостей проекций. При этом вновь введёная плоскость проекций должна быть перпендикулярна остающейся плоскости проекций, а относительно плоских геометрических фигур она должна быть поставлена в такое положение, чтобы эти фигуры были параллельны или перпендикулярны по отношению к ней.

Переход от некоторой системы плоскостей проекций к новой может быть осуществлён по одной из схем:

1.
2.

Схемы показывают, что одновременно меняется только одна плоскость проекций V (или H), другая плоскость H (или V) остаётся неизменной.

1.1 Замена фронтальной плоскости проекций.

Пусть в системе плоскостей дана точка А и указаны её проекции А1 А2.

Проследим как изменится положение проекций точки А, если плоскость V заменить новой плоскостью V1 (V1H).

Рис.2

Плоскость V1 пересекается с плоскостью Н по прямой x1, которая определяет новую ось проекций. Положение горизонтальной проекции А1 точки А остаётся без изменений, так как точка А и плоскость Н не меняли своего положения в пространстве.

Для нахождения нофой фронтальной проекции точки А - А4 достаточно спроецировать ортогонально точку А на плоскость V1. Расстояние новой фронтальной проекции А4 точки А от новой оси x1 равно расстоянию от старой фронтальной проекции А2 точки А до старой оси х.

|А4х1|=|А2х|=|АА1|.

При построении комплексного чертежа новая плоскость проекций V1 вращением вокруг новой оси х1 совмещается с остающейся плоскостью Н. Направление вращения не влияет на результат решения задачи. Вращение следует делать так, чтобы новые проекции не накладывались на старые.

Замена горизонтальной плоскости проекций.

Замена горизонтальной плоскости проекций Н новой плоскостью Н1 и построение новых проекций точки А в системе осуществляется аналогично рассмотренному случаю. Теперь без изменения остаётся фронтальная проекция точки, а для нахождения новой горизонтальной проекции А4 точки А необходимо из старой фронтальной проекции точки опустить перпендикуляр (провести линию связи) на новую ось х1 и отложить на нём от точки пересечения с осью х1 отрезок равный расстоянию старой горизонтальной проекции от старой оси х.

|А4х1|=|А1х|=|АА2|.

Рис.4

На главную