Начертательная геометрия

Начертательная геометрия
Виды проецирования
Проецирование точки на две плоскости проекций
Натуральная величина отрезка прямой
Взаимное положение двух прямых
Плоскость
Прямая и точка в плоскости
Параллельность плоскостей
Параллельность прямой и плоскости
Основные задачи замены плоскостей проекций
ОБРАЗОВАНИЕ И ИЗОБРАЖЕНИЕ ПОВЕРХНОСТЕЙ
Цилиндроид, коноид, косая плоскость.
Пересечение поверхностей плоскостью
Прямой круговой усечённый конус
Сущность аксонометрического проецирования
Косоугольная фронтальная диметрия
 
Французский стиль в русской архитектуре
Архитектура барокко во Франции
Строительство королевского дворца Лувра
павильон версальского парка — Малый Трианон
Рококо
Главный корпус Педагогического института (Герцена)
Ампир
Русский ампир в архитектуре
Величайший из зодчих России Растрелли
здание Академии художеств в Петербурге
Французский классицизм в Москве VII-XVIII
Московский Воспитательный дом
Архитектура Таганрога
Билеты по истории искусства
Архитектура Англии
Архитектура Франции
Архитектура Германии
Антуан Жан Гро
Романтизм

ПЕЙЗАЖ В АНГЛИИ

Немецкий романтизм
Филипп Отто Рунге
Эжен Делакруа
Барбизонская школа
Ренуар Пьер Огюст
Баухауз
художники Шлеммер, Пауль Клее, Георг Мухе, Лион Файнингер.
Японское жилище
Архитектура

Архитектура России конца XIX начала XX века

Архитектура и скульптура готики
Архитектура Франция
Франция — родина готических соборов.
Готический стиль в Германии
Клаус Слютер Пророк Даниил Колодец пророков
Американский дизайн и архитектура
идеи Готфрида Земпера
Влияние современного искусства на дизайн и архитектуру ХХ века
Русский авангард
Авангардизм
Работы Малевича и Лисицкого
объединение “Синий всадник”
Творчество Татлина, Родченко и Степановой
Развитие архитектуры в первые годы Советской власти
 

ОБРАЗОВАНИЕ И ИЗОБРАЖЕНИЕ ПОВЕРХНОСТЕЙ

Поверхностью называется совокупность всех последовательных положений линий, непрерывно перемещающихся в пространстве.

Следовательно, всякую поверхность можно представить как перемещение линии по другим линиям.

Линия, образующая поверхность, называется образующей.

Линия, по которой перемещается образующая, называется направляющей.

Образующие могут быть постоянными и изменяться.

Классификация поверхностей. Задание поверхности на комплексном чертеже.

Другая разновидность геометрических фигур частного положения – проецирующие прямые и плоскости: горизонтально проецирующие, фронтально проецирующие и профильно проецирующие. Само название фигур говорит о том, к какой плоскости проекций каждая из них перпендикулярна.

Поверхности разделяют:

По закону образования - на закономерные и незакономерные.
Закономерные задаются графически и аналитически, незакономерные - только графически.

По признаку развёртывания в плоскость - развёртывающиеся и неразвёртывающиеся.

По форме образующей:
- с прямолинейными образующими - линейчатые поверхности;
- с криволинейной образующей - кривые поверхности.

По способу перемещения образующей:
- с поступательным движением образующей;
- с вращательным движением образующей - поверхности вращения;
- с движением образующей по винтовой линии - винтовые поверхности.

Поверхности на комплексном чертеже могут быть заданы:

Проекциями направляющих и способом перемещения по ним образующих.

Семейством линий, принадлежащих поверхности - каркасный способ задания поверхности.

Очерком поверхности, т.е. линиями, ограничивающими на комплексном чертеже область существования проекций.

Линейчатые поверхности:

Линейчатая поверхность в общем случае однозначно определяется тремя направляющими линиями, т.е. при перемещении по ним образующей.

Линейчатые поверхности делятся на развёртывающиеся и неразвёртывающиеся.

К развёртывающимся относятся: цилиндрические поверхности, конические поверхности, поверхности с ребром возврата (торса), призматические поверхности, пирамидальные поверхности.

Циллиндрическая поверхность.

Цилиндрическая поверхность образуется перемещением прямолинейной образующей l по криволинейной направляющей m, причём образующая l остаётся постоянно параллельной заданной направляющей S.

Рис.1

Рис.2

Если точка лежит на поверхности, то она лежит на её образующей.

В частном случае, когда направляющая ломаная, получается призматическая поверхность.

Коническая поверхность.

Коническая поверхность получается при движении прямолинейной образующей l по криволинейной направляющей m, причём образующая l постоянно проходит через неподвижную точку S.

Рис.3

Рис.4

В частном случае, когда направляющая ломаная, получается пирамидальная поверхность.

На главную