Начертательная геометрия

Начертательная геометрия
Виды проецирования
Проецирование точки на две плоскости проекций
Натуральная величина отрезка прямой
Взаимное положение двух прямых
Плоскость
Прямая и точка в плоскости
Параллельность плоскостей
Параллельность прямой и плоскости
Основные задачи замены плоскостей проекций
ОБРАЗОВАНИЕ И ИЗОБРАЖЕНИЕ ПОВЕРХНОСТЕЙ
Цилиндроид, коноид, косая плоскость.
Пересечение поверхностей плоскостью
Прямой круговой усечённый конус
Сущность аксонометрического проецирования
Косоугольная фронтальная диметрия
 
Французский стиль в русской архитектуре
Архитектура барокко во Франции
Строительство королевского дворца Лувра
павильон версальского парка — Малый Трианон
Рококо
Главный корпус Педагогического института (Герцена)
Ампир
Русский ампир в архитектуре
Величайший из зодчих России Растрелли
здание Академии художеств в Петербурге
Французский классицизм в Москве VII-XVIII
Московский Воспитательный дом
Архитектура Таганрога
Билеты по истории искусства
Архитектура Англии
Архитектура Франции
Архитектура Германии
Антуан Жан Гро
Романтизм

ПЕЙЗАЖ В АНГЛИИ

Немецкий романтизм
Филипп Отто Рунге
Эжен Делакруа
Барбизонская школа
Ренуар Пьер Огюст
Баухауз
художники Шлеммер, Пауль Клее, Георг Мухе, Лион Файнингер.
Японское жилище
Архитектура

Архитектура России конца XIX начала XX века

Архитектура и скульптура готики
Архитектура Франция
Франция — родина готических соборов.
Готический стиль в Германии
Клаус Слютер Пророк Даниил Колодец пророков
Американский дизайн и архитектура
идеи Готфрида Земпера
Влияние современного искусства на дизайн и архитектуру ХХ века
Русский авангард
Авангардизм
Работы Малевича и Лисицкого
объединение “Синий всадник”
Творчество Татлина, Родченко и Степановой
Развитие архитектуры в первые годы Советской власти
 

Цилиндроид, коноид, косая плоскость.

Неразвёртывающиеся линейчатые поверхности - это поверхности с плоскостью параллелизма.

Цилиндроид - образуется движением по двум криволинейным направляющим m и n прямолинейной образующей l, остающейся всё время параллельной плоскости параллелизма.

Рис.5

Коноид - отличается от цилиндроида тем, что одна из направляющих - прямая.

Косая плоскость - отличается от цилиндроида тем, что обе направляющие - прямые. Они скрещиваются и параллельны некоторой плоскости (плоскости параллелизма).

Поверхности вращения:

Поверхностью вращения общего вида называется поверхность, которая образуется произвольной кривой (плоской или пространственной) при её вращении вокруг неподвижной оси.

В частном случае, при вращении прямой a вокруг оси m, если прямая a пересекает ось m в несобственной точке, получается цилиндрическая поверхность, а если в собственной точке - коническая поверхность.

Каждая точка образующей описывает окружность, называемую параллелью. Наибольшая и наименьшая параллели называются соответственно экватором и горлом.

Плоскости, проходящие через ось вращения, называются меридиональными, они пересекают поверхность вращения по линиям, называемым меридианами.

Меридиональная плоскость, параллельная плоскости V, называется главной меридиональной плоскостью, а линии, по которым эта плоскость пересекает поверхность вращения, называются главными меридианами.

В технике широкое распространение получили поверхности вращения второго порядка - цилиндр, конус, сфера.

Однополостный гиперболоид.

Однополостный гиперболоид вращения образуется при вращении гиперболы вокруг мнимой оси.

Эта поверхность может быть также получена вращением прямолинейной образующей l вокруг оси k, причём l скрещивается с k (li).

Рис.6

Двухполостный гиперболоид.

Двухполостный гиперболоид вращения получается вращением гиперболы вокруг действительной оси.

Рис.7

3.3 Тор.

Тор получается при вращении окружности m вокруг оси k, лежащей в плоскости окружности, но не (пересекающей окружность) проходящей через её центр O.

Тор это поверхность 4-го порядка.

Рис.8

Рис.9

Винтовые поверхности.

Винтовые поверхности образуются при движении произвольной образующей по винтовой направляющей. Если образующая - прямая линия, то образованные поверхности называются геликоидами.

На главную