Начертательная геометрия

Начертательная геометрия
Виды проецирования
Проецирование точки на две плоскости проекций
Натуральная величина отрезка прямой
Взаимное положение двух прямых
Плоскость
Прямая и точка в плоскости
Параллельность плоскостей
Параллельность прямой и плоскости
Основные задачи замены плоскостей проекций
ОБРАЗОВАНИЕ И ИЗОБРАЖЕНИЕ ПОВЕРХНОСТЕЙ
Цилиндроид, коноид, косая плоскость.
Пересечение поверхностей плоскостью
Прямой круговой усечённый конус
Сущность аксонометрического проецирования
Косоугольная фронтальная диметрия
 
Французский стиль в русской архитектуре
Архитектура барокко во Франции
Строительство королевского дворца Лувра
павильон версальского парка — Малый Трианон
Рококо
Главный корпус Педагогического института (Герцена)
Ампир
Русский ампир в архитектуре
Величайший из зодчих России Растрелли
здание Академии художеств в Петербурге
Французский классицизм в Москве VII-XVIII
Московский Воспитательный дом
Архитектура Таганрога
Билеты по истории искусства
Архитектура Англии
Архитектура Франции
Архитектура Германии
Антуан Жан Гро
Романтизм

ПЕЙЗАЖ В АНГЛИИ

Немецкий романтизм
Филипп Отто Рунге
Эжен Делакруа
Барбизонская школа
Ренуар Пьер Огюст
Баухауз
художники Шлеммер, Пауль Клее, Георг Мухе, Лион Файнингер.
Японское жилище
Архитектура

Архитектура России конца XIX начала XX века

Архитектура и скульптура готики
Архитектура Франция
Франция — родина готических соборов.
Готический стиль в Германии
Клаус Слютер Пророк Даниил Колодец пророков
Американский дизайн и архитектура
идеи Готфрида Земпера
Влияние современного искусства на дизайн и архитектуру ХХ века
Русский авангард
Авангардизм
Работы Малевича и Лисицкого
объединение “Синий всадник”
Творчество Татлина, Родченко и Степановой
Развитие архитектуры в первые годы Советской власти
 

Виды проецирования:

Методом начертательной геометрии является графический метод, основанный на операции проецирования - бинарная конструктивная модель пространства, пространственных форм и отношений, т.е. метод плоскостных (бинарных, двумерных) моделей пространств.

Нам необходимо строить плоскостные модели пространств и по ним уметь решать разнообразные пространственные задачи. Если трёхмерные пространственные формы сформированы на двухмерной плоскости - это чертёж. Чертёж - это определённая совокупность точек и линий на плоскости. Начертательная геометрия занимается построением чертежей пространственных форм и отношений. Какие же двухмерные чертежи могут быть моделями, которые бы отображали свойства пространства, пространственные формы и отношения?

Тут возникает два вопроса:

Как образовать, как получить такие модели? (Как строить такие чертежи, чтобы они были отображением пространства)

Что изображать на этой модели (чертеже), чтобы эта модель могла отражать пространственные формы и отношения?

Отвечая на первый вопрос, можно сказать, что каждый чертёж построен по методу проекций. Существует два вида проецирования: центральное и параллельное.

Центральное проецирование.

Центральное проецирование - наиболее общий случай получения проекций геометрических фигур. Сущность его состоит в следующем:

Рис.1

Пусть даны плоскость (тэта) и точка S (рис.1). Возьмём в пространстве произвольную точку A, причём A S A S. Нам нужно построить центральную проекцию точки А. Для этого через заданные точки S и A проведём луч [SA). Центральной проекцией точки А будет точка пересечения луча [SA) с плоскостью .

[SA) = A

Плоскость называют плоскостью проекций, точку S - центром проекции, полученную точку A - центральной проекцией точки А на плоскость , [SA) - проецирующим лучом.

Аппарат центрального проецирования задан, если задано положение плоскости проекций и центра проекций S. Если аппарат проецирования задан, то всегда можно определить положение центральной проекции любой точки пространства на плоскости проекций.

Например: Дана точка B. Проведём проецирующий луч [SB) и определим точку встречи его с плоскостью . Это и есть центральная проекция B точки B при заданном аппарате проецирования (,S).

Если точка С расположена так, что проецирующий луч [SС) , то он пересечёт плоскость проекций в несобственной точке С.

При заданном аппарате проецирования (,S) каждая точка пространства будет иметь одну и только одну центральную проекцию (т.к. через две различные точки можно провести одну и только одну прямую). Обратное утверждение не имеет смысла, так как точка A может быть центральной проекцией любой точки, принадлежащей прямой (AS) (Например центральные проекции точек A и D совпадают).

Отсюда следует, что одна центральная проекция точки не определяет положение точки в пространстве.

Рис.2

Для определения положения точки в пространстве необходимо иметь две центральные проекции точки, полученные из двух различных центров проецирования (рис.2).

Достоинство центрального проецирования - наглядность. Недостаток - степень искажения изображения зависит от расстояния центра проекций до плоскости проекций, поэтому центральное проецирование неудобно для простановки размеров.

В машиностроительном черчении применяется параллельное проецирование.

Параллельное проецирование.

Параллельное проецирование является частным случаем центрального проецирования, когда центр проекций лежит в несобственной точке S, поэтому все проецирующие лучи параллельны.

Рис.3

Аппарат параллельного проецирования задан, если задано положение плоскости проекций и направление проецирования S.

Все свойства центрального проецирования справедливы для параллельного проецирования:

При задании аппарата параллельного проецирования каждая точка пространства имеет одну и только одну параллельную проекцию. Обратное утверждение не имеет места.

Для задания точки в пространстве необходимо иметь две её параллельные проекции, полученные при двух различных направлениях проецирования.

Параллельное проецирование делится на:

Прямоугольное - =90° ( - угол падения проецирующего луча к плоскости проекций).

Косоугольное - 90°.

Основные инвариантные (независимые) свойства параллельного проецирования.

При параллельном проецировании нарушаются метрические характеристики геометрических фигур (происходит искажение линейных и угловых величин), причём степень нарушения зависит как от аппарата проецирования, так и от положения проецируемой геометрической фигуры в пространстве по отношению к плоскости проекции.

Рис.4

Пример:
(A,B,C,D)
|AB||AB|, |BC||BC| и т.д.
|DAB||DAB|, |ABC||ABC| и т.д.

Но наряду с этим, между оригиналом и его проекцией существует определённая связь, заключающаяся в том, что некоторые свойства оригинала сохраняются и на его проекции. Эти свойства называются инвариантными (проективными) для данного способа проецирования.

В процессе параллельного проецирования (получения проекций геометрической фигуры по её оригиналу) или реконструкции чертежа (воспроизведения оригинала по заданным его проекциям) любую теорему можно составить и доказать, базируясь на инвариантных свойствах параллельного проецирования, которые в начертательной геометрии играют такую же роль, как аксиомы в геометрии.

Следовательно, можно утверждать, что в начертательной геометрии существуют две системы аксиом:

одна система используется при параллельном проецировании - это суть инвариантные свойства параллельного проецирования.

другая система используется, когда проекции построены и решается плоская задача (задача на плоскости) - это аксиомы евклидовой геометрии.

Отсюда ясно, насколько важно выяснить и хорошо усвоить эти инвариантные свойства.

1. Проекция точки есть точка.

2. Проекция прямой линии на плоскость есть прямая линия.

(Для всех прямых l, не параллельных направлению проецирования, проекция прямой есть прямая.)

3. Если в пространстве точка инцидентна (принадлежит) линии, то проекция этой точки принадлежит проекции линии.

Следствие: Если прямые пересекаются в точке K, то проекции прямых пересекаются в проекции точки - K.

4. Проекции взаимно параллельных прямых также взаимно параллельны.

5. Отношение отрезков прямой равно отношению проекций этих отрезков.

6. Если плоская фигура параллельна плоскости проекций, то на эту плоскость она проецируется в конгруэнтную фигуру.

При параллельном переносе плоскости проекций величина проекций не изменится, следовательно, мы можем не рисовать положение плоскости проекций.

Для построения обратимого чертежа необходимо иметь две взаимосвязанные проекции оригинала.

Поэтому только прямоугольное (ортогональное) проецирование, по крайней мере, на две взаимно перпендикулярных плоскости проекций является основным методом построения технического чертежа (метод Монжа).

Ортогональное (прямоугольное) проецирование обладает рядом преимуществ перед центральным и параллельным (косоугольным) проецированием.

К ним в первую очередь следует отнести:

простоту геометрических построений для определения ортогональных проекций точек

возможность при определённых условиях сохранять на проекциях форму и размеры оригинала.

Поэтому этот метод удобен для простановки размеров.

Пространственная модель координатных плоскостей проекций.

Положение точки (а следовательно, и любой геометрической фигуры) в пространстве может быть определено, если задана координатная система отнесения (наиболее удобна - декартова). Рассмотрим макет из трёх взаимно перпендикулярных плоскостей.

Рис.5

H (П1) - горизонтальная плоскость проекций
V (П2) - фронтальная плоскость проекций
W (П3) - профильная плоскость проекций
Плоскости проекций при пересечении образуют оси координат:
x - ось абсцисс
y - ось ординат
z - ось аппликат
Оси координат при пересечении образуют начало координат O (origo - начало).

Плоскости проекций бесконечны. Они делят пространство на 8 частей - октантов.

В начертательной геометрии часто применяется система V/H - двух плоскостей проекций. При этом пространство делится на 4 четверти - квадранты.

Недостаток пространственной модели - её громоздкость, поэтому пользуются плоскостной моделью координатных плоскостей проекций - эпюром. Построение эпюра рассмотрим на примере построения эпюра точки.

На главную