Математика примеры решения задач

Типовой расчет по математике
Решение задач контрольной работы
Математика
Черчение
Архитектурно-строительные чертежи
Начертательная геометрия
Инженерная графика
Начертательная геометрия
История развития черчения
Геометрические построения
Проекционное изображение
Виды, сечения и разрезы на чертежах
Машиностроительные чертежи
Эскизы деталей
Сборочные чертежи
Строительные чертежи
Архитектурные чертежи
Чертежи строительных конструкций
Инженерные чертежи
Чертежи строительных генеральных планов
Графическое оформление чертежей
Составление рабочего чертежа детали
Туризм
Развитие туризма
Диснейленд
Софийский собор в Киеве
Исторические памятники и музеи Чехии
Архитектура санаторных зданий и сооружений
Организация туристических комплексов
пансионат «Дружба» в районе Ялты
гостиница «Интурист» в Ростове-на-Дону
достопримечательности стран Европы
Андреевская церковь
История искусства, дизайн
Курс лекций по истории искусства
Изобразительное искусство блокадного Ленинграда
История государства Российского
Ландшафтный дизайн
Как обустроить свой дом, сад
Архитектурные стили XVIII века
Архитектура
Французский стиль в русской архитектуре
Билеты по истории искусства
ИСТОРИЯ АРХИТЕКТУРЫ ЯПОНСКОГО ЖИЛИЩА
Архитектура России и Европы
Ландшафтный дизайн
Русский авангард
Примеры решения задач по электротехнике,
физике
Контрольная по физике
Электротехника
Магнитная индукция
Волновая оптика
Расчет выпрямителей
Расчет электротехнических устройств
Контрольная работа Электрические машины
Методические указания по выполнению контрольной работы
Практика по физике
Молекулярно-кинетическая теория
Электродинамика
Практическое занятие по физике
Лекции и конспекты по физике
Техническая механика
Физика Механические колебания
Атомная физика
Ядерные реакторы
Энергетика
Лабораторные работы по общему курсу физики
Энергетика
Ядерные реакторы
Термоядерный синтез
Энергетика
 

Методические указания по выполнению контрольных работ по высшей математике

Аналитическая геометрия на плоскости

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача 1. Даны вершины треугольника АВС: А (−4; 8), В(5; −4), С(10; 6). Найти: 1) длину стороны АВ; 2) уравнения сторон АВ и АС и их угловые коэффициенты; 3) внутренний угол А радианах с точностью до 0,01; 4) уравнение высоты СD и ее длину; 5) уравнения окружности, для которой высота СD есть диаметр; 6) систему линейных неравенств, определяющих треугольник АВС.

Решение:1. Расстояние d между точками М1 (х1; y1) и М2 (x2; y2) определяется по формуле:

d =  (1)

Подставив в эту формулу координаты точек А и В, имеем:

АВ = = =15

2. Уравнение прямой, проходящей через точки М1 (х1; y1) и М2 (x2; y2), имеет вид:

  =  (2)

порно

Подставив в (2) координаты точек А и В, получим уравнение прямой АВ:

 =  =  = ,

3у – 24 = − 4х – 16, 4х + 3у – 8 = 0 (АВ).

Для нахождения углового коэффициента kАВ прямой АВ разрешим полученное уравнение относительно у: у = − Отсюда kАВ= − . Подставив в формулу (2) координаты точек А и С, найдем уравнение прямой АС.

 ,

х+7у-52=0 (АС).

Отсюда kАС = −.

3. Угол  между двумя прямыми, угловые коэффициенты которых равны k1 и k 2, определяется по формуле:

tg =. (3)

Угол А, образованный прямыми АВ и АС, найдем по формуле (3), подставив в нее k1=kАВ= −, k 2= kАС=−.

tg А = ===1,

А = arctg 1 = 45°0,79 рад.

4. Так как высота СD перпендикулярна стороне АВ, то угловые коэффициенты этих прямых обратны по величине и противоположны по знаку, т.е.

kСD=−=−=.

Уравнение прямой, проходящей через данную точку М1 (х1; y1) в заданном угловым коэффициентом k направлении, имеет вид:

у – у1=k(х – х1).

Подставив в (4) координаты точки С и kСD=, получим уравнение высоты СD:

у – 6 =  (х – 10), 4у – 24 = 3х – 30, 3х – 4у – 6=0 (CD) (5)

Для нахождения длины CD определим координаты точки D, решив систему уравнений (АВ) и (CD):

 откуда х = 2, у = 0, то есть D (2;0).

Подставив в формулу (1) координаты точек С и D, находим:

CD == =10.

5. Уравнение окружности радиуса R с центром в точке Е(а; b) имеет вид:

 (х – а)2+(у – b)2 = R2. (6) 

Так как CD является диаметром искомой окружности, то ее центр Е есть середина отрезка CD. Воспользовавшись формулами деления отрезка пополам, получим:

хЕ===6, уЕ= ==3.

Следовательно, Е (6; 3) и R==5. Используя формулу (6), получаем уравнение искомой окружности:

(х – 6)2 + (у – 3)2 = 25.

6. Множество точек треугольника АВС есть пересечение трех полуплоскостей, первая из которых ограничена прямой АВ и содержит точку С, вторая ограничена прямой ВС и содержит точку А,а третья ограничена прямой АС и содержит точку В.

Для получения неравенства, определяющего полуплоскость, ограниченную прямой, АВ и содержащую точку С, подставим в уравнение прямой АВ координаты точки С:

4·10 + 3·6 – 8 =50 > 0.

Поэтому искомое неравенство имеет вид: 4х + 3у – 8 ≥0.

Для составления неравенства, определяющего полуплоскость, ограниченную прямой ВС и содержащую точку А, найдем уравнение прямой ВС, подставив в формулу (2) координаты точек В и С:

  

2х – у – 14 =0 (ВС).

Подставив в последнее уравнение координаты точки А, имеем: 2·(−4)– 8–14=−30<0. Искомое неравенство, определяющее полуплоскость, ограниченную прямой Ас и содержащую точку В: 5+7·(−4)–52=−75<0. Третье искомое неравенство х+7у–52≤0. Итак, множество точек треугольника АВС определяется системой неравенств

 

 На рис. 1 в декартовой прямоугольной системе координат хОу изображен треугольник АВС, высота СD, окружность с центром в точке Е.