Математика примеры решения задач

Типовой расчет по математике
Решение задач контрольной работы
Математика
Черчение
Архитектурно-строительные чертежи
Начертательная геометрия
Инженерная графика
Начертательная геометрия
История развития черчения
Геометрические построения
Проекционное изображение
Виды, сечения и разрезы на чертежах
Машиностроительные чертежи
Эскизы деталей
Сборочные чертежи
Строительные чертежи
Архитектурные чертежи
Чертежи строительных конструкций
Инженерные чертежи
Чертежи строительных генеральных планов
Графическое оформление чертежей
Составление рабочего чертежа детали
Туризм
Развитие туризма
Диснейленд
Софийский собор в Киеве
Исторические памятники и музеи Чехии
Архитектура санаторных зданий и сооружений
Организация туристических комплексов
пансионат «Дружба» в районе Ялты
гостиница «Интурист» в Ростове-на-Дону
достопримечательности стран Европы
Андреевская церковь
История искусства, дизайн
Курс лекций по истории искусства
Изобразительное искусство блокадного Ленинграда
История государства Российского
Ландшафтный дизайн
Как обустроить свой дом, сад
Архитектурные стили XVIII века
Архитектура
Французский стиль в русской архитектуре
Билеты по истории искусства
ИСТОРИЯ АРХИТЕКТУРЫ ЯПОНСКОГО ЖИЛИЩА
Архитектура России и Европы
Ландшафтный дизайн
Русский авангард
Примеры решения задач по электротехнике,
физике
Контрольная по физике
Электротехника
Магнитная индукция
Волновая оптика
Расчет выпрямителей
Расчет электротехнических устройств
Контрольная работа Электрические машины
Методические указания по выполнению контрольной работы
Практика по физике
Молекулярно-кинетическая теория
Электродинамика
Практическое занятие по физике
Лекции и конспекты по физике
Техническая механика
Физика Механические колебания
Атомная физика
Ядерные реакторы
Энергетика
Лабораторные работы по общему курсу физики
Энергетика
Ядерные реакторы
Термоядерный синтез
Энергетика
 

Задача 2. Составить уравнение линии, для каждой точки которой отношение расстояний до точки А (3; 0) и до прямой х=12 равно числу =0,5. Полученное уравнение привести к простейшему виду и построить кривую.

Решение. Пусть М (х; у) – текущая (произвольная) точка искомого геометрического множества точек. Опустим перпендикуляр МВ на прямую х=12 (рис. 2). Тогда В (12; у). По условию задачи

МА= МВ=

Тогда

= =

4х2 – 24х + 36 + 4у2 =х2 – 24х +144, 3х2 + 4у2=108,

Полученное уравнение представляет собой эллипс вида  где а=6, b=3.

Определим фокусы эллипса F1 (−с; 0) и F2(с; 0). Для эллипса справедливо равенство b2=a2 – b2 =9 и с=3.

То есть, F1 ( −3; 0) и F2 (3; 0) – фокусы эллипса (точки F2 и А совпадают).

Эксцентриситет эллипса =

Рис. 1

Задача 3. Составить уравнения линии, для каждой точки которой ее расстояние до точки А (3; −4) равно расстоянию до прямой у=2. Полученное уравнение привести к простейшему виду и построить кривую.

Рис. 2

Решение. М (х; у) – текущая точка искомой кривой. Опустим из точки М перпендикуляр МВ на прямую у=2 (рис. 3). Тогда В (х; 2). Так как МА =МВ,

то =  или

(х – 3)2 +у2+8у+16 =у2 – 4у +4,

−12у – 12 =(х – 3)2,

у +1= −

Рис. 3

Полученное уравнение определяет параболу с вершиной в точке О' (3; −1). Для приведения уравнения параболы к простейшему (каноническому) виду положим х – 3=Х', у +1=У'. Тогда в системе координат Х'О'У' уравнение параболы принимает следующий вид: У'=−Х')2. в системе координат Х'О'У' строим параболу.

Вопросы для самопроверки

Дайте определение прямоугольной декартовой системы координат.

Напишите формулу для нахождения расстояния между двумя точками.

Напишите формулы для определения координат точки, делящей данный отрезок в данном отношении.

Напишите формулы преобразования координат: а) при параллельном переносе системы координат; б) при повороте системы координат.

Напишите уравнения прямой: а) с угловым коэффициентом; б) проходящей через данную точку в данном направлении; в) проходящей через две данные точки; г) в «отрезках».

Как найти координаты точки пересечения двух прямых?

Напишите формулу для определения угла между двумя прямыми.

Каковы условия параллельности и перпендикулярности двух прямых?

Сформулируйте определение окружности.

Напишите уравнение окружности с центром в любой точке плоскости хОу; с центром в начале координат.

Дайте определение эллипса. Напишите каноническое уравнение эллипса.

Что называется эксцентриситетом эллипса? Как изменяется форма эллипса с изменением эксцентриситета гиперболы.

Дайте определение гиперболы. Напишите каноническое уравнение гиперболы.

Напишите формулу для определения эксцентриситета гиперболы. Напишите уравнения для нахождения асимптот гиперболы.

Сформулируйте определение параболы. Напишите каноническое уравнение параболы, симметричной относительно оси Оу.

Векторная алгебра и аналитическая геометрия в пространстве

Разберите решение задачи 4 данного пособия.