Математика примеры решения задач

Типовой расчет по математике
Решение задач контрольной работы
Математика
Черчение
Архитектурно-строительные чертежи
Начертательная геометрия
Инженерная графика
Начертательная геометрия
История развития черчения
Геометрические построения
Проекционное изображение
Виды, сечения и разрезы на чертежах
Машиностроительные чертежи
Эскизы деталей
Сборочные чертежи
Строительные чертежи
Архитектурные чертежи
Чертежи строительных конструкций
Инженерные чертежи
Чертежи строительных генеральных планов
Графическое оформление чертежей
Составление рабочего чертежа детали
Туризм
Развитие туризма
Диснейленд
Софийский собор в Киеве
Исторические памятники и музеи Чехии
Архитектура санаторных зданий и сооружений
Организация туристических комплексов
пансионат «Дружба» в районе Ялты
гостиница «Интурист» в Ростове-на-Дону
достопримечательности стран Европы
Андреевская церковь
История искусства, дизайн
Курс лекций по истории искусства
Изобразительное искусство блокадного Ленинграда
История государства Российского
Ландшафтный дизайн
Как обустроить свой дом, сад
Архитектурные стили XVIII века
Архитектура
Французский стиль в русской архитектуре
Билеты по истории искусства
ИСТОРИЯ АРХИТЕКТУРЫ ЯПОНСКОГО ЖИЛИЩА
Архитектура России и Европы
Ландшафтный дизайн
Русский авангард
Примеры решения задач по электротехнике,
физике
Контрольная по физике
Электротехника
Магнитная индукция
Волновая оптика
Расчет выпрямителей
Расчет электротехнических устройств
Контрольная работа Электрические машины
Методические указания по выполнению контрольной работы
Практика по физике
Молекулярно-кинетическая теория
Электродинамика
Практическое занятие по физике
Лекции и конспекты по физике
Техническая механика
Физика Механические колебания
Атомная физика
Ядерные реакторы
Энергетика
Лабораторные работы по общему курсу физики
Энергетика
Ядерные реакторы
Термоядерный синтез
Энергетика
 

Задача 4. Даны координаты трех точек: А(3; 0; −5), В (6; 2; 1), С (12; −12; 3).

Требуется: 1) записать векторы  и  в системе орт и найти модули этих векторов; 2) найти угол между векторами  и ; 3) составить уравнение плоскости, проходящей через точку С перпендикулярно вектору .

Решение. 1. Если даны точки М1(х1; у1; z1) b V2 (х2; у2; z2), то вектор   через орты , ,  выражается следующим образом:

= (х2 – х1) +(у2 – у1) +(z2 – z1) = aх+ах+ах. (1)

Подставляя в эту формулу координаты точек А и В, имеем:

=(6–3) +(2–0) +(1+5)=3+2+6.

Подобным образом =(12–3) +(−12–0) +(3+5) =9−12+8.

Модуль вектора  вычисляется по формуле

  =. (2)

Интегрирование функций нескольких переменных

Подставляя в формулу (2) найденные раннее координаты векторов  и , находим их модули:

==7, ==17.

2. Косинус угла α, образованного векторами ·, равен их скалярному произведению, деленному на произведение их модулей

 cos α =  (3)

Так как скалярное произведение двух векторов, заданных своими координатами, равно сумме попарных произведений одноименных координат, то ·=3·9+2·(−12)+6·8=51.

Применяя (3), имеем:

сos α =cos  =  α ≈ 64º37'.

3. Известно, что уравнение искомая плоскость проходит через точку М0(х0;у0;z0) перпендикулярно вектору n, имеет вид

 А( х–х0)+В(у–у0)+С(z–z0)=0. (4)

По условию задачи искомая плоскость проходит через точку С (12;−12;3) перпендикулярно вектору . Подставляя в (4) А=3, В=2, С=6, х0=12, у0=−12, z0=3, получим:

 3(х−12)+2(у+12)+6(z–3)=0,

3х+2у+6z−30=0 – искомое уравнение плоскости.

Вопросы для самопроверки

Какие величины называются скалярными? векторными?

Какие векторы называются коллинеарными?

Какие два вектора называются равными?

Как сложить два вектора? Как их вычесть?

Как найти координаты вектора по координатам точек его начала и конца?

Назовите правила сложения, вычитания векторов, заданных в координатной форме. Как умножить вектор на скаляр?

Дайте определение скалярного произведения двух векторов. Перечислите основные свойства скалярного произведения.

Как найти скалярное произведение двух векторов по их координатам?

Напишите формулу для определения угла между двумя векторами.

 Напишите условия: коллинеарности двух векторов; их перпендикулярности.

 Напишите общее уравнение плоскости.

 Напишите уравнение плоскости проходящей через данную точку перпендикулярно данному вектору.

  Какой вид имеет уравнение плоскости, проходящей через три данные точки?

  напишите формулу для определения расстояния от точки до плоскости.

Элементы линейной алгебры

Разберите решение задачи 5 данного пособия.