Математика примеры решения задач

Типовой расчет по математике
Решение задач контрольной работы
Математика
Черчение
Архитектурно-строительные чертежи
Начертательная геометрия
Инженерная графика
Начертательная геометрия
История развития черчения
Геометрические построения
Проекционное изображение
Виды, сечения и разрезы на чертежах
Машиностроительные чертежи
Эскизы деталей
Сборочные чертежи
Строительные чертежи
Архитектурные чертежи
Чертежи строительных конструкций
Инженерные чертежи
Чертежи строительных генеральных планов
Графическое оформление чертежей
Составление рабочего чертежа детали
Туризм
Развитие туризма
Диснейленд
Софийский собор в Киеве
Исторические памятники и музеи Чехии
Архитектура санаторных зданий и сооружений
Организация туристических комплексов
пансионат «Дружба» в районе Ялты
гостиница «Интурист» в Ростове-на-Дону
достопримечательности стран Европы
Андреевская церковь
История искусства, дизайн
Курс лекций по истории искусства
Изобразительное искусство блокадного Ленинграда
История государства Российского
Ландшафтный дизайн
Как обустроить свой дом, сад
Архитектурные стили XVIII века
Архитектура
Французский стиль в русской архитектуре
Билеты по истории искусства
ИСТОРИЯ АРХИТЕКТУРЫ ЯПОНСКОГО ЖИЛИЩА
Архитектура России и Европы
Ландшафтный дизайн
Русский авангард
Примеры решения задач по электротехнике,
физике
Контрольная по физике
Электротехника
Магнитная индукция
Волновая оптика
Расчет выпрямителей
Расчет электротехнических устройств
Контрольная работа Электрические машины
Методические указания по выполнению контрольной работы
Практика по физике
Молекулярно-кинетическая теория
Электродинамика
Практическое занятие по физике
Лекции и конспекты по физике
Техническая механика
Физика Механические колебания
Атомная физика
Ядерные реакторы
Энергетика
Лабораторные работы по общему курсу физики
Энергетика
Ядерные реакторы
Термоядерный синтез
Энергетика
 

Приложения производной

Разберите решение задач 9, 10 данного пособия.

Задача 9. Исследовать функцию у= и построить ее график.

Решение. Исследование функции проведем по следующей схеме:

1. Найдем область определения функции.

2. Исследуем функцию на непрерывность.

3. Установим, является ли данная функция четной, нечетной.

4. Найдем интервалы возрастания и убывания функции и точки экстремума.

5. Найдем интервалы выпуклости и вогнутости кривой и точки ее перегиба.

6. Найдем асимптоты кривой.

Реализуем указанную схему:

1. Функция определена при всех значениях аргумента х, кроме х=1.

2. Данная функция является элементарной, поэтому она непрерывна на своей области определения, т.е. на интервалах (−∞; 1) и (1; ∞).

3. Для установления четности или нечетности функции проверим выполнимость равенств = (тогда f(х) – четная функция) или  =  (для нечетной функции) для любых х и −х из области определения функции:

 ==−

Следовательно,  и , то есть данная функция не является ни четной, ни нечетной.

4. Для исследования функции на экстремум найдем ее первую производную:

у'=

у'=0 при  и у' − не существует при . Тем самым имеем две критические точки:    Но точка  не принадлежит области определения функции, экстремума в ней быть не может.

Разобьем числовую ось на три интервала (рис. 5): (−∞; 0), (0; 1), (1; ∞).

В первом и третьем интервалах первая производная отрицательна, следовательно, здесь функция убывает; во втором интервале – положительная и данная функция возрастает. При переходе через точку  первая производная меняет свой знак с минуса на плюс, поэтому в этой точку функция имеет минимум: уmin=y(0)=−1. Значит, А(0; −1) − точка минимума.

 

На рис. 5 знаками +, −указаны интервалы знакопостоянства производной у', а стрелами – возрастание и убывание исследуемой функции.

5. Для определения точек перегиба графика функции и интервалов выпуклости и вогнутости кривой найдем вторую производную:

у''=− 

 


Рис. 5

у''=0 при  и у''− не существует при . Разобьем числовую ось на три интеграла (рис. 6); (−∞; −), (−; 1), (1; ∞). На первом интервале вторая

производная у''=0 при  − абсцисса точки перегиба.

Следовательно, В - точка перегиба графика функции.

 

6.  − точка разрыва функции, причем .

Поэтому прямая  является вертикальной асимптотой графика. Для определения уравнения наклонной асимптоты  воспользуемся формулами:

 .

Тогда

,

.

Значит прямая у=0 есть горизонтальная асимптота графика исследуемой функции, представленного на рис. 7.

Рис. 7

Бытовки дачные большие еще на сайте.