Решение типового варианта по математике

Доказать сходимость ряда 
сходимость знакочередующийся ряд
Основные свойства преобразования Лапласа
Вычислить интеграл
Теория вероятностей и математическая статистика
Формула полной вероятности
Локальная и интегральная теоремы Лапласа
Вычисление пределов
Раскрытие неопределенностей
Дифференцирование функций
Правило Лопиталя вычисления пределов
Найти частные производные первого порядка
Производная по направлению и градиент
Исследование функций
Направления выпуклости графика функции одного переменного
Провести полное исследование и построить график функции
Экстремумы функции двух переменных.
Интегралы и их приложения
Внесение под знак дифференциала и замена переменной.
Интегрирование выражений, содержащих квадратный трехчлен
Приложения определенного интеграла

Локальная и интегральная теоремы Лапласа

Пример 8. Предприятие выполняет в срок 70% заказов. Какова вероятность того, что из 200 заказов будут выполнены в срок :

А) ровно 140 заказов;

Б) от 130 до 150 заказов .

Решение. Будем считать, что вероятность выполнения одного заказа p=0,7 не зависит от наличия на предприятии других заказов. Тогда имеем серию n=200 повторных независимых испытаний с вероятностью выполнения одного заказа p=0,7 и не выполнения заказа q=1p =0,3.

А) Так как число испытаний велико n=200, и в срок необходимо выпол­нить ровно k =140 заказов, то применяем локальную теорему Лапласа. Находим z по формуле:

Из таблицы значений функции Гаусса находим .

По формуле находим вероятность того, что из 200 заказов выполнятся в срок ровно 140 :

Б) Для расчёта вероятности того, что из 200 заказов будут выполнены в срок : от k1= 130 до k2= 150 заказов, применяем интегральную теорему Лапласа: .

Рассчитаем значения z1, z2 по формулам:

Используя таблицу и нечётность функции Лапласа, получим:

Ф (1.45) = 0,8764; Ф (-1,54) = - 0,8764.

Тогда вероятность того, что из 200 заказов будут выполнены в срок от 130 до 150 заказов :

Ответ :

Случайные величины

Пример 9. Определить математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины Х, если распределение за­дано таблицей Таблица 3

xi

0

1

2

3

4

5

6

p(xi)

0,2

0,25

0,3

0,15

0,06

0,03

0,01

 

Решение.  значит, имеем закон распределения дискретной случайной величины.

Найдем математическое ожидание М(Х) по формуле:

Найдем дисперсию D(X) по формуле: D(X)=M(X2)-(M(X))2

Среднее квадратическое отклонение .

Внесение под знак дифференциала и замена переменной в интеграле