Примеры решения задач по электротехнике, физике

Примеры решения задач по электротехнике, физике
Линейные электрические цепи постоянного тока
Методы расчета сложных цепей постоянного тока
Примеры  решения типовых задач
Рассчитаем токи для электрической цепи.
Электрические цепи однофазного синусоидального тока
Символический метод расчета электрических цепей
Комплексная амплитуда тока
Действующее значение напряжения, приложенного к электрической цепи
Применение векторных диаграмм для расчета электрических цепей
Резонансы в электрических цепях
Электрические цепи трехфазного тока
Интерференция света
Фотоны. Энергия, импульс световых квантов
Статистическая физика
Элементы кристаллографии

ЭЛЕКТРОМАГНЕТИЗМ

· Закон Био — Савара — Лапласа

dB[dl,r],

где dB — магнитная индукция поля, создаваемого элементом i проводника с током; m — магнитная проницаемость; m0 — магнитная постоянная (m0 =4p · 10 -7 Гн/м); dl — вектор, равный по модулю длине dl проводника и совпадающий по направлению с током (элемент проводника); I — сила тока; r — радиус-вектор, проведенный от середины элемента проводника к точке, магнитная индукция в которой определяется.

 Модуль вектора dB выражается формулой

dBdl,

где a — угол между векторами dl и r.

· Магнитная индукция В связана с напряженностью Н магнитного поля (в случае однородной, изотропной среды) соотношением

BH

или в вакууме

B0=μ0∙H.

· Магнитная индукция в центре кругового проводника с током

В,

где R — радиус кривизны проводника.

· Магнитная индукция поля, создаваемого бесконечно длинным прямым проводником с током,

В,

где r — расстояние от оси проводника.

Магнитная индукция поля, создаваемого отрезком проводником

В.

Обозначения ясны из рис.1, а. Вектор индукции В перпенди­кулярен плоскости чертежа, направлен к нам и поэтому изображен точкой.

При симметричном расположении концов проводника относи­тельно точки, в которой определяется магнитная индукция (рис. 1, б),  и, следовательно,

В

Рис. 1

· Магнитная индукция поля, создаваемого соленоидом в сред­ней его части (или тороида на его оси),

В

где п — число витков, приходящих­ся на единицу длины соленоида;

I — сила тока в одном витке. 

· Принцип суперпозиции маг­нитных полей: магнитная индук­ция В результирующего поля равна векторной сумме магнитных индукций В1, В2, ..., Вn складываемых полей, т. е.

BВi.

В  частном случае наложения двух полей

В=В1+В2,

а модуль магнитной продукции

,

где a — угол между векторами В1 и В2.

• Закон Ампера. Сила, действующая на проводник с током в магнитном поле,

F=[l,B]∙I,

где I — сила тока; l — вектор, равный по модулю длине l проводника и совпадающий по направлению с током; В — магнитная индукция поля.

Модуль вектора F определяется выражением

F=B∙I∙l∙sin α,

где α — угол между векторами l и В.

• Сила взаимодействия двух прямых бесконечно длинных па­раллельных проводников с токами I1 и I2, находящихся на расстоянии d друг от друга, рассчитанная на отрезок проводника длиной l выражается  формулой

.

• Магнитный момент контура с током

pm=I∙S,

где S — вектор, равный по модулю площади S, охватываемой кон­туром, и совпадающий по направлению с нормалью к его плоскости.

• Механический момент, действующий на контур с током, по­мещенный  в однородное магнитное поле,

M=[pm∙B].

Модуль механического момента

M=pm∙B∙sinα,

 где α — угол между векторами рm и В.

• Потенциальная (механическая) энергия контура с током в магнитном поле

Пмех= pm∙B =pm∙B∙cosα.

• Сила, действующая на контур с током в магнитном поле (из­меняющемся вдоль оси x),

,

где  —изменение магнитной индукции вдоль оси Ох, рассчи­танное на единицу длины; α — угол между векторами рm и В.

• Сила F, действующая на заряд Q, движущийся со скоростью υ в магнитном поле с индукцией В (сила Лоренца), выражается фор­мулой

F=Q [υ, B] или F=|Q|uB sina,

где a— угол, образованный вектором скорости υ движущейся ча­стицы и вектором В индукции магнитного поля. 

· Циркуляция вектора магнитной индукции В вдоль замкну­того контура

где Bi — проекция вектора магнитной индукции на направление элементарного перемещения dl вдоль контура L. Циркуляция век­тора напряженности Н вдоль замкнутого контура

,

· Закон полного тока (для магнитного поля в вакууме)

где m0=4∙π∙10-7 Гн/м - магнитная постоянная;  - алгебраическая сумма токов, охватываемых контуром; п - число токов.

Закон полного тока (для произвольной среды)

· Магнитный поток Ф через плоский контур площадью S:

а) в случае однородного поля

Ф=BS cos a; или Ф = BnS,

где a — угол между вектором нормали n к плоскости контура и век­тором магнитной индукции В; Вn — проекция вектора В на нормаль n (Bn=B cos a);

б) в случае неоднородного поля

где интегрирование ведется во всей поверхности S.

· Потокосцепление, т.е. полный магнитный поток, сцепленный со всеми витками соленоида или тороида,

где Ф — магнитный поток через один виток; N — число витков со­леноида или тороида.

· Магнитное поле тороида, сердечник которого составлен из двух частей, изготовлен­ных из веществ с раз­личными магнитными проницаемостями:

а) магнитная индук­ция на осевой линии тороида

где I — сила тока в об­мотке тороида; N — чис­ло ее витков; l1 и l2 -­ длины первой и второй частей сердечника торо­ида; m1 и m2 —магнитные проницаемости ве­ществ первой и второй частей сердечника торо­ида; m0 —магнитная постоянная

б) напряженность магнитного поля на осе­вой линии тороида в первой и второй частях сердечника

H1=B /(m1 ∙m2); H1=B /(m2 ∙m0 );

в) магнитный поток в сердечнике тороида

или по аналогии с законом Ома (формула Гопкинсона) 

Фm=Fm/Rm,

 где Fm - магнитодвижущая сила; Rm - полное магнитное сопро­тивление цепи;

г) магнитное сопротивление участка цепи

Rm=l/(μ∙μ0S).

 • Магнитная проницаемость μ, ферромагнетика связана с маг­нитной индукцией В поля в нем и напряженностью Н намагничи­вающего поля соотношением

μ=B/(μ0H).

• Работа по перемещению замкнутого контура с током в маг­нитном поле

A=IDФ,

где  DФ — изменение магнитного потока, пронизывающего поверх­ность, ограниченную контуром; I — сила тока в контуре.

• Основной закон электромагнитной индукции (закон Фарадея — Максвелла)

,

где   — электродвижущая сила индукции; N — число витков кон­тура; Y — потокосцепление.

Частные случаи применения основного закона электромагнитной индукции:

а) разность потенциалов U на концах проводника длиной I, движущегося со скоростью u в однородном магнитном поле,

U=B∙l∙u∙sina,

где a — угол между направлениями векторов скорости u и магнит­ной индукции В;

б) электродвижущая сила индукции , возникающая в рамке, содержащей N витков, площадью S, при вращении рамки с угловой скоростью со в однородном магнитном поле с индукцией В

,

где wt — мгновенное значение угла между вектором В и вектором нормали n к плоскости рамки.

• Количество электричества Q, протекающего в контуре,

,

где R — сопротивление контура; DY — изменение потокосцепления.

•Электродвижущая сила самоиндукции  возникающая в замкнутом контуре при изменении силы тока в нем,

, или ,

где L — индуктивность контура.

• Потокосцепление контура Y =LI, где L — индуктивность контура.

• Индуктивность соленоида (тороида)

.

Во всех случаях вычисления индуктивности соленоида (тороида) с сердечником по приведенной формуле для определения магнит­ной проницаемости следует пользоваться графиком зависимости В от Н (см. рис. 24.1), а затем формулой

.

• Мгновенное значение силы тока I в цепи, обладающей актив­ным сопротивлением R и индуктивностью L:

а) после замыкания цепи

,

где ε - ЭДС источника тока; t—время, прошедшее после замы­кания цепи;

б) после размыкания цепи

,

где l0 - сила тока в цепи при t=0, t - время, прошедшее с момен­та размыкания цепи.

• Энергия W магнитного поля, создаваемого током в замкнутом контуре индуктивностью L, определяется формулой

,

где I — сила тока в контуре.

• Объемная (пространственная) плотность энергии однородного магнитного поля (например, поля длинного соленоида)

.

• Формула Томсона. Период собственных колебаний в контуре без активного сопротивления

,

где L — индуктивность контура; С — его электроемкость.

• Связь длины электромагнитной волны с периодом Т и час­тотой υ колебаний

  или ,

где с — скорость электромагнитных волн в вакууме (с=3∙108 м/с).

• Скорость электромагнитных волн в среде

где ε - диэлектрическая проницаемость; μ - магнитная проницае­мость среды.

Пример 1. Два параллельных бесконечно длинных провода, по которым текут в одном направлении токи I=60 А, расположены на расстоянии d=10 см друг от друга. Определить магнитную индукцию В в точке, отстоящей от одного проводника на расстоянии r1=5 см и от другого — на расстоянии r2=12 см.

Пример 3. Определить магнитную индукцию В поля, создаваемого отрезком бесконечно длинного прямого провода, в точке, равноудаленной от концов отрезка и находящейся на расстоянии r0=20 см от середины его (рис. 4). Сила тока I, текущего по проводу, равна 30 А, длина l отрезка равна 60 см.

Пример 5. По тонкому проводящему кольцу радиусом R = 10 см течет ток I=80 А. Найти магнитную индукцию В в точке A, равно­удаленной от всех точек кольца на расстояние г=20 см.

Пример 7. По двум параллельным прямым проводам длиной l=2,5 м каждый, находящимся на расстоянии d=20 см друг от друга, текут одинаковые токи I=1 кА. Вычислить силу F взаимодействия токов.

Пример 10. Квадратная рамка со стороной длиной а=2 см, содержащая N=100 витков тонкого провода, подвешена на упругой нити, постоянная кручения С которой равна 10 мкН·м/град. Плоскость рамки совпадает с направлением линии индукции внешнего магнитного поля. Определить индукцию внешнего магнитного поля

Пример 13. Электрон, имея скорость u=2 Мм/с, влетел в однородное магнитное поле с индукцией В=30 мТл под углом a=30° к направлению линий индукции. Определить радиус R и шаг h винтовой линии, по которой будет двигаться электрон.

Пример 15. Альфа-частица прошла ускоряющую разность потенциалов U=104 В и влетела в скрещенные под прямым углом электрическое (E=10 кВ/м) и магнитное (B=0,1 Тл) поля. Найти отношение заряда альфа-частицы к ее массе, если, двигаясь перпендикулярно обоим полям, частица не испытывает отклонений от прямолинейной траектории.

Пример 18. Виток, по которому течет ток I=20 А, свободно установится в однородном магнитном поле В=16 мТл. Диаметр d витка равен 10 см. Какую работу нужно совершать, чтобы медленно повернуть виток на угол a=p/2 относительно оси, совпадающей с диаметром?

Пример. 20. По соленоиду течет ток I=2 А. Магнитный поток Ф, пронизывающий поперечное сечение соленоида, равен 4 мкВб. Оп­ределить индуктивность L соленоида, если он имеет N=800 витков.

Пример 23. На стержень из немагнитного материала длиной l=50 см намотан в один слой провод так, что на каждый сантиметр длины стержня приходится 20 витков. Определить энергию W маг­нитного поля внутри соленоида, если сила тока I в обмотке равна 0,5 А. Площадь S сечения стержня равна 2 см2.

Контрольная работа № 4 Задачи Бесконечно длинный провод с током I= 100 А изогнут так, как показано на рис. 1. Определить магнитную индукцию В в точке О. Радиус дуги R=10 см.

Примеры решения задач по электротехнике, физике