Примеры решения задач по электротехнике, физике

Примеры решения задач по электротехнике, физике
Линейные электрические цепи постоянного тока
Методы расчета сложных цепей постоянного тока
Примеры  решения типовых задач
Рассчитаем токи для электрической цепи.
Электрические цепи однофазного синусоидального тока
Символический метод расчета электрических цепей
Комплексная амплитуда тока
Действующее значение напряжения, приложенного к электрической цепи
Применение векторных диаграмм для расчета электрических цепей
Резонансы в электрических цепях
Электрические цепи трехфазного тока
Интерференция света
Фотоны. Энергия, импульс световых квантов
Статистическая физика
Элементы кристаллографии

ЭЛЕКТРОМАГНЕТИЗМ

Пример 5. По тонкому проводящему кольцу радиусом R = 10 см течет ток I=80 А. Найти магнитную индукцию В в точке A, равно­удаленной от всех точек кольца на расстояние г=20 см.

Решение. Для решения задачи воспользуемся законом Био — Савара — Лапласа:

dB[dl,r],

где dB —магнитная индукция поля, создаваемого элементом тока Idl в точке, определяемой радиус-вектором r.

 

 Рис. 7

Выделим на кольце элемент dl и от него в точку А проведем радиус-вектор г (рис. 7). Вектор dB направим в соответствии с правилом буравчика.

  Согласно принципу суперпозиции магнитных полей, магнитная индукции В в точке А определяется интегралом

 

где интегрирование ведется по всем элементам dI кольца Разложим вектор  dB на две составляющие: dB┴ – перпендикулярную плоскости кольца и dB║ — параллельную плоскости кольца, т. е.

dB=dB^+dB½½. Тогда

Заметив, что из соображений симметрии и что векторы dB┴ от различных элементов dI сонаправлены, заменим векторное суммирование, заменим векторное суммирование (интегрирование) скалярным:

где ( поскольку dI перпендикулярен r и, следовательно, sin a=1). Таким образом,

После сокращения на 2π и замены cos β на R/r (рис. 7)

Выразим все величины в единицах СИ, произведем вычисления:

или

Вектор В направлен на оси кольца (пунктирная стрелка на рис. 7) в соответствии с правилом буравчика.

Пример 6. бесконечно длинный проводник изогнут так, как это изображено на рис. 8. Радиус дуги окружности R=10 см. Определить магнитную индукцию В поля, создаваемого в токе О током I=80 A, текущим по этому проводнику.

Решение. Магнитную индукцию В в точке О найдем, используя принцип суперпозиции магнитных полей В=∑Вi. В на­шем случае проводник можно разбить на три части (рис. 9) два прямолинейных проводника (1 и 3), одним концом уходящие в бесконечность, и дугу полуокружности (2) радиуса R. Тогда

B=B1+B2+B3

где B1, В2 и В3 — магнитные индукции поля в точке О, создавае­мые током, текущим соответственно на первом, втором и третьем участках проводника. 

 

 Рис. 8 Рис. 9

Так как точка О лежит на оси проводника 1, то В1=0 и тогда

B=B2+B3

Учитывая, что векторы В2 и В3 направлены в соответствии с пра­вилом буравчика перпендикулярно плоскости чертежа от нас, гео­метрическое суммирование можно заменить алгебраическим:

В=В2+В3.

Магнитную индукцию поля В2 можно найти, используя выраже­ние для магнитной индукции в центре кругового проводника с то­ком I:

Так как магнитная индукция В2 создается в точке О половиной такого кругового проводника с током, то, учитывая равный вклад в магнитную индукцию от каждой половинки проводника, можно написать

Магнитную индукцию В3 найдем, используя формулу (3) при­мера 3:

В нашем случае

Тогда

Используя найденные выражения для В2 и В3 получим

или

Произведем вычисления:

Примеры решения задач по электротехнике, физике