Примеры решения задач по электротехнике, физике

Примеры решения задач по электротехнике, физике
Линейные электрические цепи постоянного тока
Методы расчета сложных цепей постоянного тока
Примеры  решения типовых задач
Рассчитаем токи для электрической цепи.
Электрические цепи однофазного синусоидального тока
Символический метод расчета электрических цепей
Комплексная амплитуда тока
Действующее значение напряжения, приложенного к электрической цепи
Применение векторных диаграмм для расчета электрических цепей
Резонансы в электрических цепях
Электрические цепи трехфазного тока
Интерференция света
Фотоны. Энергия, импульс световых квантов
Статистическая физика
Элементы кристаллографии

Пример 13. Электрон, имея скорость u=2 Мм/с, влетел в однородное магнитное поле с индукцией В=30 мТл под углом a=30° к направлению линий индукции. Определить радиус R и шаг h винтовой линии, по которой будет двигаться электрон.

Решение. Известно, что на заряженную частицу, влетевшую в магнитное поле, действует сила Лоренца, перпендикулярная векторам магнитной индукции В и скорости v частицы:

F=QuB sin a, (1)

где Q — заряд частицы. 

В случае, если частицей является электрон, формулу (1) можно записать в виде

F= |e|uB sin a.

 Так как вектор силы Лоренца перпендикулярен вектору скоро­сти, то модуль скорости не будет изменяться под действием этой силы. Но при постоянной скорости, как это следует из формулы (1), останется постоянным и значение силы Лоренца. Из механики известно, что постоянная си­ла, перпендикулярная скоро­сти, вызывает Рис. 13 

движение по окружности. Следовательно, электрон, влетевший в маг­нитное поле, будет двигаться по окружности в плоскости, перпендикулярной линиям индукции, со скоростью, рав­ной поперечной составляю­щей u1 скорости (рис. 13); одновременно он будет дви­гаться и вдоль поля со ско­ростью u||:

u|| = u sin a, u|| = u cos a.

В результате одновременного участия в движениях по окружно­сти и по прямой электрон будет двигаться по винтовой линии.

Радиус окружности, по которой движется электрон, найдем сле­дующим образом. Сила Лоренца F сообщает электрону нормальное ускорение ап. По второму закону Ньютона, F=man, где F=|e|u1B и an=u2 ^R,. Тогда 

|e|u^B = mu22/R,

откуда после сокращения на uz находим радиус винтовой линии:

Подставив значения величин т, u, e, В и a и произведя вычисле­ния, получим

R=0,19 мм.

Шаг винтовой линии равен пути, пройденному электроном вдоль поля со скоростью ux  за время, которое понадобится электрону для того, чтобы совершить один оборот,

h =u|| T (2)

где T=2pR/u^— период вращения электрона. Подставив это выра­жение для Т в формулу (2), найдем

Подставив в эту формулу значения величин p, R и a и вычислив, получим h=2,06 мм.

Пример 14. Электрон движется в однородном магнитном поле с индукцией В=0,03 Тл по окружности радиусом r=10 см. Опреде­лить скорость u электрона.

Решение. Движение электрона по окружности в однородном магнитном поле совершается под действием силы Лоренца (см. примеры 1 и 2). Поэтому можно написать

  (1)

откуда найдем импульс электрона:

р=тu=|е|Вr.  (2) 

Релятивистский импульс выражается формулой

Выполнив преобразования, получим следующую формулу для определения скорости частицы:

  (3)

В данном случае р= |e|Br. Следовательно,

В числитель и знаменатель формулы (4) входит выражение |е| Вr(т0 с). Вычислим его отдельно:

|е| Вr / (m0c) = 1,76.

Подставив найденное значение отношения |е| Вr(т0 с) в формулу (4), получим

 b = 0,871, или u = сb= 2,61-108 м/с.

Электрон, обладающий такой скоростью, является релятивистским.

Примеры решения задач по электротехнике, физике