Примеры решения задач по электротехнике, физике

Примеры решения задач по электротехнике, физике
Линейные электрические цепи постоянного тока
Методы расчета сложных цепей постоянного тока
Примеры  решения типовых задач
Рассчитаем токи для электрической цепи.
Электрические цепи однофазного синусоидального тока
Символический метод расчета электрических цепей
Комплексная амплитуда тока
Действующее значение напряжения, приложенного к электрической цепи
Применение векторных диаграмм для расчета электрических цепей
Резонансы в электрических цепях
Электрические цепи трехфазного тока
Интерференция света
Фотоны. Энергия, импульс световых квантов
Статистическая физика
Элементы кристаллографии

Пример 15. Альфа-частица прошла ускоряющую разность потенциалов U=104 В и влетела в скрещенные под прямым углом электрическое (E=10 кВ/м) и магнитное (B=0,1 Тл) поля. Найти отношение заряда альфа-частицы к ее массе, если, двигаясь перпендикулярно обоим полям, частица не испытывает отклонений от прямолинейной траектории.

Решение. Для того чтобы найти отношение заряда Q альфа-частицы к ее массе m, воспользуемся связью между работой сил электрического поля и изменением кинетической энергии частиц:

QU=mu2/2,

откуда 

Q/m=u2/(2U). (1)

Скорость u альфа-частицы найдем из следующих соображений. В скрещенных электрическом и магнитном полях на движущуюся заряженную частицу действуют две силы:

а) сила Лоренца Fл=Q[vВ], направленная перпендикулярно скорости v и вектору магнитной индукции В;

б) кулоновская сила FK=QE, сонаправленная с вектором напряженности Е электростатического поля (Q>0).

Сделаем рисунок с изображением координатных осей и векторных

величин. Направим вектор магнитной индукции В вдоль оси Оz (рис. 14), скорость v—в положительном направлении оси Ох, тогда Fл и Fk будут направлены так, как это указано на ри­сунке.

Альфа-частица не будет испытывать отклонения, если геометри­ческая сумма сил Fл+Fk будет равна нулю. В проекции на ось

Рис. 14

Оу получим следующее равенство (при этом учтено, что вектор ско­рости v перпендикулярен вектору магнитной индукции В и sin (vÙB)=l):

QE—QuB = O,

откуда

u =E/B.

Подставив это выражение скорости в формулу (1), получим

Q/m=E2( 2UB2).

Убедимся в том, что правая часть равенства дает единицу отно­шения заряда к массе (Кл/кг):

Произведем вычисления:

Пример 16. В одной плоскости с бесконечно длинным прямым проводом, по которому течет ток I=50 А, расположена прямоуголь­ная рамка так, что две большие стороны ее длиной l=65 см парал­лельны проводу, а расстояние от провода до ближайшей из этих сторон равно ее ширине. Каков магнитный поток Ф, пронизываю­щий рамку?

Решение. Магнитный поток Ф через поверхность площадью S определяется выражением

  Рис. 15

В нашем случае вектор магнитной индукции В перпендикулярен плоскости рамки. Поэтому для всех точек рамки Вn=В. Магнитная индукция В, создаваемая бесконечно длинным прямым проводником с током, определяется формулой

,

где x— расстояние от провода до точки, в которой определяется В.

Для вычисления магнитного потока заметим, что так как В зависит от х и элементарный поток Ф будет также за­висеть от х, то

dФ=B(x)dS.

Разобьем площадь рамки на узкие элементарные площадки длиной l, шири­ной dx и площадью dS=ldx (рис. 15). В пределах этой площадки магнитную индукцию можно считать постоянной, так как все части площад­ки равноудалены (на расстояние х) от провода. С учетом сделанных замечаний элементарный магнитный поток можно записать в виде

dФ=

Проинтегрировав полученное выражение в пределах от x1=a до х2=2а, найдем

|p2p.

Подставив пределы, получим

  Убедимся в том, что правая часть полученного равенства дает единицу магнитного потока (Вб): [m0] [I] [l]= Гн/м ×1 А ×1 м=1 Вб. Произведя вычисления по формуле (1), найдем Ф=4,5 мкВб.

Пример 17. Определить индукцию В и напряженность Н магнит­ного поля на оси тороида без сердечника, по обмотке которого, со­держащей N=200 витков, идет ток I=5 А. Внешний диаметр d1 тороида равен 30 см, внутренний d2= 20 см.

Решение. Для определения напряженности магнитного поля внутри тороида вычислим циркуляцию вектора Н вдоль линии маг­нитной индукции поля:

Из условия симметрии следует, что линии магнитной индукции тороида представляют собой окружности и что во всех точках этой линии напряженности одинаковы. Поэтому в выражении циркуля­ции напряженность Н можно вынести за знак интеграла, а интегри­рование проводить в пределах от нуля до 2 pr, где r — радиус ок­ружности, совпадающей с линией индукции, вдоль которой вычис­ляется циркуляция,

  (1)

С другой стороны, в соответствии с законом полного тока цир­куляция вектора напряженности магнитного поля равна сумме то­ков, охватываемых контуром, вдоль которого вычисляется цирку­ляция:

  (2)

Приравняв правые части равенств (1) и (2), получим

  (3) 

Линия, проходящая вдоль тороида, охватывает число токов, равное числу витков тороида. Сила тока во всех витках одинакова. Поэтому формула (3) примет вид 2prH=-NI, откуда

  (4) 

Для средней линии тороида r=1/2(R1R2)=1/4(d1+d2). Подставив это выражение r в формулу (4), найдем

  (5)

Магнитная индукция В0 в вакууме связана с напряженностью поля соотношением B0=m0H. Следовательно,

  (6)

Подставив значения величин в выражения (5) и (6), получим:

H=1,37 кА/м, B0=1,6 мТл.

Примеры решения задач по электротехнике, физике