Примеры решения задач по электротехнике, физике

Примеры решения задач по электротехнике, физике
Линейные электрические цепи постоянного тока
Методы расчета сложных цепей постоянного тока
Примеры  решения типовых задач
Рассчитаем токи для электрической цепи.
Электрические цепи однофазного синусоидального тока
Символический метод расчета электрических цепей
Комплексная амплитуда тока
Действующее значение напряжения, приложенного к электрической цепи
Применение векторных диаграмм для расчета электрических цепей
Резонансы в электрических цепях
Электрические цепи трехфазного тока
Интерференция света
Фотоны. Энергия, импульс световых квантов
Статистическая физика
Элементы кристаллографии

Пример 23. На стержень из немагнитного материала длиной l=50 см намотан в один слой провод так, что на каждый сантиметр длины стержня приходится 20 витков. Определить энергию W маг­нитного поля внутри соленоида, если сила тока I в обмотке равна 0,5 А. Площадь S сечения стержня равна 2 см2.

Решение. Энергия магнитного поля соленоида с индуктив­ностью L, по обмотке которого течет ток I, выражается формулой

.  (1)

Индуктивность соленоида в случае немагнитного сердечника за­висит только от числа витков на единицу длины и от объема V сер­дечника: L=μ0n2V, где μ0 —магнитная постоянная. Подставив вы­ражение индуктивности L в формулу (1), получим. Учтя, что V=lS, запишем

. (2)

Сделав вычисления по формуле (2), найдем

W=126 мкДж.

Пример 24. По обмотке длинного соленоида со стальным сердеч­ником течет ток I=2А. Определить объемную плотность ω энергии магнитного поля в сердечнике, если число п витков на каждом сан­тиметре длины соленоида равно 7 см-1.

Решение. Объемная плотность энергии магнитного поля оп­ределяется по формуле

.  (1)

Напряженность Н магнитного поля найдем по формуле H=nl. Подставив сюда значения п (п =7 см-1=700 м-1) и I, найдем

H=1400 А/м.

Магнитную индукцию В определим по графику (рис. 18) зависимости В от Н. Находим, что напряженности H=1400 А/м со­ответствует магнитная индукция B=1,2 Тл.

Произведя вычисление по формуле (1), найдем объемную плот­ность энергии:

ω=840 Дж/м3.

Пример 25. На железный сердечник длиной l=20 см малого се­чения (d<l) намотано N=200 витков. Определить магнитную прони­цаемость μ железа при силе тока I=0,4 А.

Решение. Магнитная проницаемость μ связана с магнитной индукцией В и напряженностью Н магнитного поля соотношением

B= μ0μH. (1)

Эта формула не выражает линейной зависимости В от Н, так как μ является функцией Н. Поэтому для определения магнитной прони­цаемости обычно пользуются графиком зависимости В(Н) (см. рис. 24.1). Из формулы (1) выразим магнитную проницаемость:

μ =B/( μ0H).

Напряженность Н магнитного поля вычислим по формуле (ка­тушку с малым сечением можно принять за соленоид) Н=п1, где п — число витков, приходящихся на отрезок катушки длиной 1 м. Выразив в этой формуле п через число N витков катушки и ее дли­ну l, получим

H=(N/l)I.

Подставив сюда значения N, l и I и произведя вычисления, най­дем

H=400 А/м.

По графику находим, что напряженности Н=400 А/м соответст­вует магнитная индукция B=1,05 Тл. Подставив найденные значе­ния В и Н, а также значение μ0 в формулу (2), вычислим магнитную проницаемость:

μ=2,09 ∙103.

Пример 26. Колебательный контур, состоящий из воздушного кон­денсатора с двумя пластинами площадью S=100 см2 каждая и катушки с индуктивностью L=l мкГн, резонирует на волну длиной λ=10 м. Определить расстояние d между пластинами конденсатора.

Решение. Расстояние между пластинами конденсатора мож­но найти из формулы электроемкости плоского конденсатора С=ε0εS/d, где ε — диэлектрическая проницаемость среды, заполняю­щей конденсатор, откуда

d=ε0εS/C (1)

Из формулы Томсона, определяющей период колебаний в элек­трическом контуре: , находим электроемкость

.  (2)

Неизвестный в условии задачи период колебаний можно опреде­лить, зная длину волны λ, на которую резонирует контур. Из соот­ношения λ =сТ имеем

Т= λ /с.

Подставив выражения периода Т в формулу (2), а затем электро­емкости С в формулу (1), получим

.

Произведя вычисления, найдем d=3,14 мм.

Пример 27. Колебательный контур состоит из катушки с индук­тивностью L= 1,2 мГн и конденсатора переменной электроемкости от C1=12 пФ до С2=80 пФ. Определить диапазон длин электромаг­нитных волн, которые могут вызывать резонанс в этом контуре. Активное сопротивление контура принять равным нулю.

Решение. Длина λ электромагнитной волны, которая может вызвать резонанс в колебательном контуре, связана с периодом Т колебаний контура соотношением

λ =сТ. (1)

Период колебаний, в свою очередь, связан с индуктивностью L катушки и электроемкостью С конденсатора колебательного конту­ра соотношением (формула Томсона) . Следовательно,

 . (2)

Согласно условию задачи, индуктивность контура неизменна, а электроемкость контура может изменяться в пределах от C1 до C2. Этим значениям электроемкости соответствуют длины волн λ1 и λ2,, определяющие диапазон длин волн, которые могут вызвать резо­нанс. После вычислений по формуле (2) получим:

λ1=226м; λ2=585 м.

Примеры решения задач по электротехнике, физике