Примеры решения задач по электротехнике, физике

Примеры решения задач по электротехнике, физике
Линейные электрические цепи постоянного тока
Методы расчета сложных цепей постоянного тока
Примеры  решения типовых задач
Рассчитаем токи для электрической цепи.
Электрические цепи однофазного синусоидального тока
Символический метод расчета электрических цепей
Комплексная амплитуда тока
Действующее значение напряжения, приложенного к электрической цепи
Применение векторных диаграмм для расчета электрических цепей
Резонансы в электрических цепях
Электрические цепи трехфазного тока
Интерференция света
Фотоны. Энергия, импульс световых квантов
Статистическая физика
Элементы кристаллографии

Статистическая физика

Молекулярно-кинетическая теория

 Концентрация частиц (молекул, атомов и т. п.) однородной системы

n=N/V,

где V — объем системы.

 Основное уравнение кинетической теории газов

p=2/зn<eп>,

где р — давление газа; <eп>— средняя кинетическая энергия* поступательного движения молекулы.

 Средняя кинетическая энергия:

приходящаяся на одну степень свободы молекулы 

<e1>=½kT;

;

поступательного движения молекулы

,

где k — постоянная Больцмана; Т — термодинамическая темпера­тура; i — число степеней свободы молекулы;

вращательного движения молекулы

 Зависимость давления газа от концентрации молекул и тем­пературы

p=nkT.

Скорость молекул:

средняя квадратичная

, или ;

средняя арифметическая

, или ;

наиболее вероятная

, или ,

где m1 — масса одной молекулы.

Явления переноса

 Среднее число соударений, испытываемых одной молекулой газа в единицу времени,

,

где d — эффективный диаметр молекулы; п — концентрация моле­кул; <υ> — средняя арифметическая скорость молекул.

 Средняя длина свободного пробега молекул газа

.

 Импульс (количество движения), переносимый молекулами из одного слоя газа в другой через элемент поверхности,

,

где h— динамическая вязкость газа; —градиент (поперечный) скорости течения его слоев; DS — площадь элемента поверхности; dt — время переноса.

 Динамическая вязкость

h=r<υ><l>

где r — плотность газа (жидкости); <υ> — средняя скорость хаоти­ческого движения его молекул; <l> — их средняя длина свободного пробега.

 Закон Ньютона

,

где F — сила внутреннего трения между движущимися слоями газа.

 Закон Фурье

DQ= -lSDt,

где DQ — теплота, прошедшая посредством теплопроводности через сечение площадью S за время Dt; l — теплопроводность; - градиент температуры.

 Теплопроводность .(коэффициент теплопроводности) газа

l=cvr<υ><l> или l=<υ><l>,

где cv — удельная теплоемкость газа при постоянном объеме; r — плотность газа; <υ> — средняя арифметическая скорость его молеку­лы; <l> — средняя длина свободного пробега молекул.

 Закон Фика

,

где Dm — масса газа, перенесенная в результате диффузии через поверхность площадью S за время Dt; D — диффузия (коэффициент Эффузии); -градиент концентрации молекул; m1 —масса одной молекулы.

 Диффузия (коэффициент диффузии)

D=<υ><l>.

Статистические распределения

 Распределение Больцмана (распределение частиц в силовом поле)

n=n0e-U/(kT),

где п — концентрация частиц; U — их потенциальная энергия; n0 — концентрация частиц в точках поля, где U=0; k — постоян­ная Больцмана; T — термодинамическая температура.

 Барометрическая формула (распределение давления в одно­родном поле силы тяжести)

р=p0e-mgz/(kT), или p=p0e-Mgz/(RT),

где р — давление газа; m — масса частицы; М — молярная масса; z — координата (высота) точки по отношению к уровню, принятому за нулевой; р0 — давление на этом уровне; g — ускорение свобод­ного падения; R — молярная газовая постоянная.

 Вероятность того, что физическая величина х, характери­зующая молекулу, лежит в интервале значений от х до x+dx, определяется по формуле

dW(x)=f(x)dx

где f(x)—функция распределения молекул по значениям данной физической величины х (плотность вероятности).

 Количество молекул, для которых физическая величина х, характеризующая их, заключена в интервале значений от х до x+dx,

dN=NdW(x)=Nf(x)dx.

 Распределение Максвелла (распределение молекул по ско­ростям) выражается двумя соотношениями:

а) число молекул, скорости которых заключены в пределах от J до J+dJ,

,

где f(υ) —функция распределения молекул по модулям скоростей, выражающая отношение вероятности того, что скорость молекулы лежит в интервале от υ до υ+dυ, к величине этого интервала, а также долю числа молекул, скорости которых лежат в указанном интервале; N — общее число молекул; m — масса молекулы;

б) число молекул, относительные скорости которых заключены в пределах от u до u+du,

где u=υ/υв — относительная скорость, равная отношению скорости J к наивероятнейшей скорости υв; f(u) — функция распределения по относительным скоростям.

 Распределение молекул по импульсам. Число молекул, им­пульсы которых заключены в пределах от р до p+dp,

,

где f(p) — функция распределения по импульсам.

 Распределение молекул по энергиям. Число молекул, энер­гии которых заключены в интервале от e до e+de,

,

где f(e)—функция распределения по энергиям.

 Среднее значение физической величины х в общем случае

,

а в том случае, если функция распределения нормирована на еди­ницу,

<x>=òxf(x)dx

где f(x) — функция распределения, интегрирование ведется по всей совокупности изменений величины х.

Например, среднее значение скорости молекулы (т. е. средняя арифметическая скорость)

;

средняя квадратичная скорость

<υкв>=<υ2>1/2,

где

;

средняя кинетическая энергия поступательного движения молекулы .

Тепловые свойства

Молярная внутренняя энергия химически простых (состоя­щих из одинаковых атомов) твердых тел в классической теории теп­лоемкости выражается формулой

Um = 3RT,

где R — молярная газовая постоянная; Т — термодинамическая температура.

Теплоемкость С системы (тела) при постоянном объеме опре­деляется как производная от внутренней энергии U по температуре, т. е.

C = dU/dT.

Закон Дюлонга и Пти. Молярная теплоемкость Cm химиче­ски простых твердых тел

Cm = 3R

Закон Неймана — Коппа. Молярная теплоемкость химиче­ски сложных тел (состоящих из различных атомов)

Сm = n×ЗR,

где п — общее число частиц в химической формуле соединения.

Среднее значение энергии  квантового осциллятора, при­ходящейся на одну степень свободы, в квантовой теории Эйнштей­на выражается формулой

где e0 — нулевая энергия (e0 = 1/2ħw); ħ — постоянная Планка;

w — круговая частота колебаний осциллятора; k — постоянная Больцмана; Т — термодинамическая температура.

Молярная внутренняя энергия кристалла в квантовой теории теплоемкости Эйнштейна определяется по формуле

где Umo = 3/2RqE — молярная нулевая энергия по Эйнштейну;

qE = ħw/k — характеристическая температура Эйнштейна.

Молярная теплоемкость кристалла в квантовой теории тепло­емкости Эйнштейна

При низких температурах (T<<qE)

Сm = 3R(qE/T)exp(-qE/T).

Частотный спектр колебаний в квантовой теории теплоемко­сти Дебая задается функцией распределения частот g(w). Число dZ собственных частот тела, приходящихся на интервал частот от w до w dw, определяется выражением

dZ =g(w)dn

Для трехмерного кристалла содержащего N атомов,

,

где wmax — максимальная частота, ограничивающая спектр коле­баний.

Энергия U твердого тела связана с средней энергией  квантового осциллятора и функцией распределения частот g(w) соотношением

Молярная внутренняя энергия кристалла по Дебаю

где -молярная нулевая энергия кристалла по Дебаю; -характеристическая температура Дебая.

Молярная теплоёмкость, кристалла по Дебаю

Предельный закон Дебая. В области низких температур (Т<<qВ) последняя формула принимает вид

.

Кристаллы. Элементы кристаллографии

Пример 1. В баллоне вместимостью V=6,9 л находится азот массой m=2,3 г. При нагревании часть молекул диссоциировали на атомы. Коэффициент диссоциации a=0,2. Определить: 1) общее число N1 молекул и концентрацию n1 молекул азота до нагревания; 2) концентрацию n2 молекул и n3 атомов азота после нагревания.

Пример 3. Средняя длина свободного пробега <l> молекулы углекислого газа при нормальных условиях равна 40 нм. Определить среднюю арифметическую скорость <J> молекул и число z соударений, которые испытывает молекула в 1 с.

Пример 6. Пылинки массой m=10-18 г взвешены в воздухе. Определить толщину слоя воздуха, в пределах которого концентра­ция пылинок различается не более чем на 1 %. Температура Т воздуха во всём объеме одинакова и равна 300 К.

Пример 9. Определить количество теплоты DQ, необходимое для нагревания кристалла NaCI массой m=20г на DТ=2К, в двух случаях, если нагревание происходит от температуры: 1) T1=qВ; 2) Т2=2К. Характеристическую температуру Дебая qD для NaCI принять равной 320 К. 

Пример 12. Определить число п узлов, приходящихся на одну элементарную ячейку в гранецентрированной кубической решетке.

Примеры решения задач по электротехнике, физике