Примеры решения задач по электротехнике, физике

Примеры решения задач по электротехнике, физике
Линейные электрические цепи постоянного тока
Методы расчета сложных цепей постоянного тока
Примеры  решения типовых задач
Рассчитаем токи для электрической цепи.
Электрические цепи однофазного синусоидального тока
Символический метод расчета электрических цепей
Комплексная амплитуда тока
Действующее значение напряжения, приложенного к электрической цепи
Применение векторных диаграмм для расчета электрических цепей
Резонансы в электрических цепях
Электрические цепи трехфазного тока
Интерференция света
Фотоны. Энергия, импульс световых квантов
Статистическая физика
Элементы кристаллографии

Пример 6. Пылинки массой m=10-18 г взвешены в воздухе. Определить толщину слоя воздуха, в пределах которого концентра­ция пылинок различается не более чем на 1 %. Температура Т воздуха во всём объеме одинакова и равна 300 К.

Решение. При равновесном распределении пылинок кон­центрация их зависит только от координаты z по оси, направленной вертикально. В этом случае к распределению пылинок можно при­менить формулу Больцмана

 n=n0e-U/(kT). (1) 

Так как в однородном поле силы тяжести U=mgz, то

n=n0e-mgz/(kT) (2)

По условию задачи, изменение Dn концентрации с высотой мало по сравнению с n (Dn/n=0,01), поэтому без существенной погреш­ности изменение концентрации Dn можно заменить дифференциа­лом dn.

Дифференцируя выражение (2) по z, получим

dп= —п0e-mgz/(kT)dz.

Так как п0e-mgz/(kT)=n, то

dn= -ndz.

Отсюда находим интересующее нас изменение координаты:

dz= -

Знак минус показывает, что положительным изменениям координа­ты (dz>0) соответствует уменьшение относительной концентрации (dn<0). Знак минус опустим (в данном случае он несуществен) и заменим дифференциалы dz и dn конечными приращениями Dz и Dn:

Dz =.

Подставим в эту формулу значения величин Dn/n=0,01, k=1,38×10-23 Дж/К, T=300 К, m= 10-21 кг, g=9,81 м/с2 и, произведя вычисления, найдем

Dz=4,23 мм.

Как видно из полученного результата, концентрация даже таких маленьких пылинок (m== 10-18 г) очень быстро изменяется с высотой.

Пример 7. В сосуде содержится газ, количество вещества v которого равно 1,2 моль. Рассматривая этот газ как идеальный, определить число DN молекул, скорости υ которых меньше 0,001 наиболее вероятной скорости υв.

Решение. Для решения задачи удобно воспользоваться рас­пределением молекул по относительным скоростям u (u=υ/υв). Число dN(u) молекул, относительные скорости и, которых заключены в пределах от u до du, определяется формулой

,  (1)

где N — полное число молекул.

По условию задачи, максимальная скорость интересующих нас молекул υmax=0,001υв, откуда umax=υmax/υв=0,001. Для таких значений и выражение (1) можно существенно упростить. В самом деле, для u«1 имеем е-2»1-u2. Пренебрегая значением u2=(0,001)2=10-6 по сравнению с единицей, выражение (1) запишем в виде

.  (2)

Интегрируя это выражение по и в пределах от 0 до umax, получим

, или . (3)

Выразив в (3) число молекул N через количество вещества и постоянную Авогадро, найдем расчетную формулу:

. (4)

Подставим в (4) значения величин v, na и произведем вычисле­ния:

.

Пример 8. Зная функцию f(р) распределения молекул по импуль­сам, определить среднее значение квадрата импульса <p2>.

Решение. Среднее значение квадрата импульса <p2> можно определить по общему правилу вычисления среднего:

.  (1)

Функция распределения молекул по импульсам имеет вид

  (2)

 Эта функция распределения уже нормирована на единицу, т. е.

.

  С учетом нормировки формулу (1) перепишем иначе:

  (3)

Подставим выражение f(p) по уравнению (2) в формулу (3) и выне­сем величины, не зависящие от р, за знак интеграла:

Этот интеграл можно свести к табличному.

, положив .

В нашем случае это даст

После упрощений и сокращений найдем

<p2>=3mkT.

ручная гравировка на часах, zakaz.
Примеры решения задач по электротехнике, физике