Математика примеры решения задач

Типовой расчет по математике
Решение задач контрольной работы
Математика
Черчение
Архитектурно-строительные чертежи
Начертательная геометрия
Инженерная графика
Начертательная геометрия
История развития черчения
Геометрические построения
Проекционное изображение
Виды, сечения и разрезы на чертежах
Машиностроительные чертежи
Эскизы деталей
Сборочные чертежи
Строительные чертежи
Архитектурные чертежи
Чертежи строительных конструкций
Инженерные чертежи
Чертежи строительных генеральных планов
Графическое оформление чертежей
Составление рабочего чертежа детали
Туризм
Развитие туризма
Диснейленд
Софийский собор в Киеве
Исторические памятники и музеи Чехии
Архитектура санаторных зданий и сооружений
Организация туристических комплексов
пансионат «Дружба» в районе Ялты
гостиница «Интурист» в Ростове-на-Дону
достопримечательности стран Европы
Андреевская церковь
История искусства, дизайн
Курс лекций по истории искусства
Изобразительное искусство блокадного Ленинграда
История государства Российского
Ландшафтный дизайн
Как обустроить свой дом, сад
Архитектурные стили XVIII века
Архитектура
Французский стиль в русской архитектуре
Билеты по истории искусства
ИСТОРИЯ АРХИТЕКТУРЫ ЯПОНСКОГО ЖИЛИЩА
Архитектура России и Европы
Ландшафтный дизайн
Русский авангард
Примеры решения задач по электротехнике,
физике
Контрольная по физике
Электротехника
Магнитная индукция
Волновая оптика
Расчет выпрямителей
Расчет электротехнических устройств
Контрольная работа Электрические машины
Методические указания по выполнению контрольной работы
Практика по физике
Молекулярно-кинетическая теория
Электродинамика
Практическое занятие по физике
Лекции и конспекты по физике
Техническая механика
Физика Механические колебания
Атомная физика
Ядерные реакторы
Энергетика
Лабораторные работы по общему курсу физики
Энергетика
Ядерные реакторы
Термоядерный синтез
Энергетика
 

Упражнение 7. Найти общее решение (общий интеграл) дифференциального уравнения I порядка .

Решение:

Правая часть уравнения  обладает свойством . Поэтому заданное уравнение является однородным дифференциальным уравнением I порядка. Совершим замену , где - некоторая функция от аргумента х. Отсюда . Исходное уравнение приобретает вид .

Продолжаем преобразования: ; .

Производим разделение переменных: .

После интегрирования обеих частей уравнения получаем

;

.

Таким образом ; .

Потенцируя, находим  или ; .

Итак, общий интеграл исходного уравнения приобретает вид

, где С – произвольная постоянная.

Упражнение 8. Найти частное решение линейного однородного дифференциального уравнения II порядка с постоянными коэффициентами:

а)

б)

в)

Решение:

а) Для заданного дифференциального уравнения составим соответствующее характеристическое уравнение по принципу: . Решаем полученное квадратное уравнение и получаем два вещественных разных корня .

Т.к. , то общее решение данных уравнений записывается в виде . В нашем случае , где - произвольные постоянные.

Отсюда , .

Используя начальные условия : , т.е. .

Из того что  следует , т.е. , .

Решая систему уравнений , получаем .

Теперь в наше общее решение  подставим найденные значения . Частное решение исходного уравнения, удовлетворяющее заданным начальным условиям, приобретает вид .

б) Для заданного дифференциального уравнения составим соответствующее характеристическое уравнение по принципу: . Решаем полученное квадратное уравнение и получаем два равных вещественных корня .

Т.к. , то общее решение данных уравнений записывается в виде . В нашем случае , где - произвольные постоянные.

Отсюда , .

Учитывая начальные условия, получаем систему уравнений для определения : . Решая систему, получаем .

Искомое частное решение имеет вид:

в) Для заданного дифференциального уравнения  составим соответствующее характеристическое уравнение . Решая это уравнение, убеждаем, что оно не имеет вещественных корней.

В этом случае общее решение соответствующего дифференциального уравнения записывается в виде , где  - коэффициенты характеристического уравнения).

У нас  поэтому общее решение заданного дифференциального уравнения имеет вид .

 Отсюда .

Таким образом, для определения значений  исходя из начальных условий, получаем систему уравнений ,

решая которую имеем .

Итак, искомое частное решение приобретает вид

Упражнение 9. Дискретная случайная величина Х имеет только два возможных значения х1 и х2 , причем х1 < х2. Найти закон распределения величины Х, если известно, что математическое ожидание М (х) = 1,4, дисперсия D (х) = 0,24 и вероятность р1 того, что Х примет значение х1, равна 0,6.

Решение:

Так как сумма вероятностей всех возможных значений Х равна 1, то вероятность p2 того, что Х примет значение х2, равна p2 = 1 - p1 = 1 – 0,6 = 0,4.

Напишем закон распределения Х:

Х

х1

х2

p

0,6

0,4

Для отыскания х1 и х2 составим два уравнения.

Для составления первого уравнения воспользуемся тем, что математическое ожидание

M(x) определяется по формуле M(x) = х1 р1 + х2 р2 + … + хn рn

В нашем случае: M(x) = х1 р1 + х2 р2

Учитывая, что по условию M(x) = 1,4, можем записать первое уравнение:

0,6х1 + 0,4х2 = 1,4.

Учитывая, что по условию D(x) = 0,24, пользуясь формулой D (х) = M (X2) – [M(X)]2, напишем второе уравнение:

0,6 х12 + 0,4 х22 - 1,42 = 0,24, или

0,6 х12 + 0,4 х22 = 2,2.

Решив полученную систему уравнений, найдем два решения:

х1 = 1, х2 = 2 и х1 = 1,8, х2 = 0,8.

По условию, х1 < х2, поэтому задаче удовлетворяет лишь первое решение.

Окончательно получим искомый закон распределения: