Математический анализ. Курс лекций и примеры решения задач

Типовой расчет по математике
Решение задач контрольной работы
Математика
Черчение
Архитектурно-строительные чертежи
Начертательная геометрия
Инженерная графика
Начертательная геометрия
История развития черчения
Геометрические построения
Проекционное изображение
Виды, сечения и разрезы на чертежах
Машиностроительные чертежи
Эскизы деталей
Сборочные чертежи
Строительные чертежи
Архитектурные чертежи
Чертежи строительных конструкций
Инженерные чертежи
Чертежи строительных генеральных планов
Графическое оформление чертежей
Составление рабочего чертежа детали
Туризм
Развитие туризма
Диснейленд
Софийский собор в Киеве
Исторические памятники и музеи Чехии
Архитектура санаторных зданий и сооружений
Организация туристических комплексов
пансионат «Дружба» в районе Ялты
гостиница «Интурист» в Ростове-на-Дону
достопримечательности стран Европы
Андреевская церковь
История искусства, дизайн
Курс лекций по истории искусства
Изобразительное искусство блокадного Ленинграда
История государства Российского
Ландшафтный дизайн
Как обустроить свой дом, сад
Архитектурные стили XVIII века
Архитектура
Французский стиль в русской архитектуре
Билеты по истории искусства
ИСТОРИЯ АРХИТЕКТУРЫ ЯПОНСКОГО ЖИЛИЩА
Архитектура России и Европы
Ландшафтный дизайн
Русский авангард
Примеры решения задач по электротехнике,
физике
Контрольная по физике
Электротехника
Магнитная индукция
Волновая оптика
Расчет выпрямителей
Расчет электротехнических устройств
Контрольная работа Электрические машины
Методические указания по выполнению контрольной работы
Практика по физике
Молекулярно-кинетическая теория
Электродинамика
Практическое занятие по физике
Лекции и конспекты по физике
Техническая механика
Физика Механические колебания
Атомная физика
Ядерные реакторы
Энергетика
Лабораторные работы по общему курсу физики
Энергетика
Ядерные реакторы
Термоядерный синтез
Энергетика
 

Множества. Операции над множествами В математике первичными понятиями являются понятия множества и элемента множества. Множества обозначают большими латинскими буквами A, B, ..., а их элементы – малыми a, b, ... Если элемент a принадлежит множеству A, то пишут aÎA. В противном случае пишут aÏA.

Для любого множества A (непустого или пустого) полагается AÈÆ=A.

Логические символы В математических рассуждениях часто встречаются выражения «существует элемент», обладающий некоторыми свойствами, и «любой элемент» среди элементов, имеющих некоторое свойство. Вместо слова «существует» или равносильного ему слова «найдётся» иногда пишут символ $, т. е. перевернутую латинскую букву E (от англ. Existence существование), а вместо слов «любой», «каждый», «всякий» – символ ", т. е. перевернутое латинское A (от англ. аny любой). Символ $ называется символом существования, а символ " – символом всеобщности.

Свойство непрерывности действительных чисел связано с самым простейшим использованием математики на практике – с измерением величин. При измерении какой-либо физической или какой-нибудь другой природы величины часто получают с большей или меньшей точностью её приближённые значения

Числовые множества Мощность множеств Расширенная числовая прямая Известно что между множеством действительных чисел и множеством точек числовой прямой существует взаимнооднозначное соответствие. Часто бывает удобно дополнить эти множества элементами, обозначаемыми через +¥ и –¥ и называемыми соответственно плюс и минус бесконечностями

Промежутки действительных чисел

Конечные и бесконечные множества. Эквивалентные множества. Мощность Рассматривая различные множества, мы замечаем, что иногда можно, если не фактически, то хотя бы примерно, указать число элементов в данном множестве. Таковы, например, множество всех вершин некоторого многогранника, множество всех простых чисел, не превосходящих данного числа, и т. д.

Примеры. Множества точек на любых двух отрезках [a, b] и [c, d] эквивалентны между собой.

Теорема Кантора Можно доказать, что из всех бесконечных множеств счётные множества имеют наименьшую мощность, если только существуют бесконечные множества, неэквивалентные счётному. Такие множества называются несчётными, их существование следует из теоремы Кантора.

Верхняя и нижняя грани множества Ограниченные и неограниченные множества Введём ряд нужных в дальнейшем понятий и изучим некоторые свойства числовых множеств.

Рассмотрим произвольное множество XÌ¡.

Последовательность. Предел последовательности Пусть X – какое-либо множество и ¥ – множество натуральных чисел. Если каждому элементу множества ¥ поставлен в соответствие единственный вполне определённый элемент множества X, то говорят, что задана последовательность.

Бесконечно малые и бесконечно большие последовательности Последовательность, имеющая своим пределом нуль, называется бесконечно малой.

Теорема о единственности предела последовательности

Свойство пределов последовательностей

Теорема. Если последовательности xn, yn имеют конечные пределы: , то их произведение также имеет конечный предел, причём .

Неопределённые выражения Выше были оставлены без рассмотрения случаи, когда пределы переменных xn, yn (один или оба) бесконечны или, если речь идет о частном, когда предел знаменателя равен нулю. Из этих случаев мы здесь остановимся лишь на четырёх, представляющих некоторую важную и интересную особенность.

Предел монотонной ограниченной последовательности Переходим к изучению вопроса о том, какими свойствами должна обладать последовательность, чтобы у неё существовал предел. Прежде чем сформулировать окончательный ответ, рассмотрим один простой и важный класс последовательностей, для которых этот вопрос решается легко.

Лемма . Пусть даны монотонно возрастающая последовательность xn и монотонно убывающая последовательность yn, причём всегда

Критерий сходимости Больцано–Коши Общий критерий сходимости последовательности принадлежит чешскому математику Больцано и французскому математику Коши. Для его формулировки нам понадобится следующее понятие.

Отсюда следует, что любая фундаментальная последовательность, начиная с некоторого номера, становится ограниченной.

Число «e»

Определение подпоследовательности Рассмотрим теперь, наряду с последовательностью xn, какую-либо извлечённую из нее частичную последовательность (или подпоследовательность)

Теорема (Больцано–Вейерштрасса). Из любой ограниченной последовательности xn всегда можно извлечь такую подпоследовательность, которая сходилась бы к конечному пределу.

Наибольший и наименьший пределы Итак, для любой последовательности xn, будь она ограничена или нет, существуют частичные пределы. Можно показать, что среди этих частичных пределов обязательно найдутся наибольший и наименьший; они называются наибольшим и наименьшим пределами самой последовательности xn

Предел функции свойства пределов

Понятие функции является одним из самых важных понятий в математике и её приложениях. В курсе математического анализа будут сначала изучаться только действительные функции одного действительного аргумента, т. е. функции .

Рассмотрим различные способы задания функций. Прежде всего, функции могут задаваться с помощью формул: аналитический способ. Для этого используется некоторый запас изученных и специально обозначенных функций, алгебраические действия и предельный переход.

Элементарные функции постоянная у = с, с – константа, степенная у = xp, показательная у = aх (а>0), логарифмическая у = logaх (а>0, a¹1), тригонометрические у = sin х, у = cos х, у = tg х, у = ctg х и обратные тригонометрические у = arcsin х,
у = arccos х, у = arctg х, у = arcctg х, а также гиперболические:

Дробно-рациональные функции (рациональные дроби). К этому классу относятся функции, которые могут быть заданы в виде , где Р(х) и Q(x) – многочлены, причём Q(x) – ненулевой многочлен.

Предел функции по Гейне Первое определение предела функции

Перейдём теперь к изучению одного из самых основных понятий математического анализа – понятию предела функции. Под «точками» будем понимать либо конечные точки, либо бесконечно удалённые, т. е. либо действительные числа, либо одну из бесконечностей ¥, +¥ или –¥. Дадим сначала определение предела функции в терминах пределов последовательностей. Это определение часто называют определением предела функции по Гейне.

Предел функции по подмножеству При рассмотрении пределов функции часто приходится иметь дело с пределами сужений функций на том или ином множестве, т. е. с пределами функций, получающихся из данных функций, рассмотрением их не на всём множестве, на котором они заданы, а на каком-то содержащемся в нём.

Непрерывные функции Критерий существования предела функции в точке

Дадим теперь определение функции, непрерывной в данной точке.

Пример. Все точки множества натуральных чисел ¥ изолированы, а множество ¤ всех рациональных чисел не имеет изолированных точек.

Предел функции по Коши Второе определение предела функции Существует другое определение предела функции, не использующее понятие предела последовательности, а формулируемое в терминах окрестностей и называемое определением предела функции по Коши.

Эквивалентность двух определений предела функции Перейдём теперь к сравнению определений предела функции по Гейне и по Коши.

Односторонние пределы и односторонняя непрерывность При изучении функций иногда оказывается полезным рассмотреть пределы их сужений на множествах, лежащих по одну сторону от точки, в которой рассматривается предел. Такие пределы называются односторонними пределами.

Понятие предела слева (справа) при x®x0, как и вообще понятие предела в точке, содержательно только тогда, когда точка x0 является точкой прикосновения множества, по которому берётся предел.

Свойства пределов функции Пусть XÌ¡, x0 – точка прикосновения множества X. Справедливы следующие свойства пределов функций.

Свойство. Если функции  и  таковы, что , то найдётся проколотая окрестность точки x0, на пересечении которой с множеством X выполнено неравенство f(x) < g(x).

Определение бесконечно малых и бесконечно больших функций Все рассматриваемые в этом и следующем пункте функции будем предполагать определёнными на множестве XÌ¡ и рассматривать их конечные и бесконечные пределы при стремлении аргумента к конечной или к бесконечно удалённой точке x0.

Взаимосвязь между бесконечно малыми и бесконечно большими функциями

Классификация бесконечно малых функций Во многих случаях представляет интерес сравнение бесконечно малых между собой по характеру их приближения к нулю. Рассмотрим две бесконечно малые a(x) и b(x) при x®x0 и предположим, что b(x) не обращается в ноль в некоторой проколотой окрестности точки x0. Будем сравнивать эти бесконечно малые, изучая поведение их отношения при x®x0.

Классификация бесконечно больших функций Для бесконечно больших величин может быть развита та же классификация.

Точки непрерывности и точки разрыва функции

Точки разрыва функции и их классификация Пусть функция f определена в некоторой окрестности точки x0, кроме, быть может, самой этой точки. Точка x0 называется точкой разрыва функции f, если функция f не определена в точке x0 или если она определена в этой точке, но не является в ней непрерывной.

Критерий существования предела функции Существование предела монотонной функции Вопрос о существовании предела функции особенно просто решается для функций частного типа, представляющих обобщение понятия монотонной последовательности.

Критерий Коши существования предела функции В настоящем пункте по аналогии со случаем последовательностей будет получено необходимое и достаточное условие того, что функция имеет конечный предел в данной точке x0.

Предел и непрерывность композиции функции Рассмотрим вопрос о существовании конечных и бесконечных пределов композиции функций, каждая из которых имеет соответствующий предел.

Можно показать, что все рассмотренные ранее элементарные функции и их суперпозиции непрерывны на области их определения.

Свойства функций, непрерывность на отрезке

Предел всякой подпоследовательности последовательности, имеющей конечный или бесконечный предел, равен пределу всей последовательности

Промежуточные значения непрерывных на отрезке функций Теорема (теорема Больцано–Коши).

Непрерывность на отрезке Функция f, определённая на числовом множестве X, называется строго возрастающей (строго убывающей), если для любых двух чисел x1ÎX и x2ÎX таких, что x1<x2, выполняется неравенство f(x1)<f(x2) (соответственно f(x1)>f(x2)). Функция, строго возрастающая или строго убывающая, называется строго монотонной.

В силу леммы 6, функция  однозначная и строго возрастает на отрезке

Равномерная непрерывность

Определение производной функции Если для некоторого значения x0 существуют пределы , или , или , то говорят, что при x=x0 существует бесконечная производная или, соответственно, бесконечная производная определённого знака, равная +¥ или –¥.

Вычисление производной от функции называется дифференцированием.

Примеры. Вычислить производную функции. Связь между дифференцируемостью и существованием производной функции Выясним теперь связь между дифференцируемостью функции в точке и существованием производной функции в той же точке.

Связь между дифференцируемостью и непрерывностью функции в точке Вычислить интегралы

Геометрический смысл производной и дифференциала Понятия производной и дифференциала функции в данной точке связаны с понятием касательной к графику функции в этой точке. Чтобы выяснить эту связь, определим, прежде всего, касательную.

Предельное положение секущей M0M при Dx®0, или, что то же, при M®M0, называется касательной к графику функции f в точке M0.

Физический смысл производной и дифференциала

Правила вычисления производных Пример. Вычислить производную функций .

Пример. Разложить функцию по формуле Тейлора с центром разложения в точке до членов второго порядка включительно.

Производная обратной функции Пользуясь формулой, вычислить производную функций . Производная степенно-показательной функции Математика вычисление производной Дифференциалы Пределы

Производная и дифференциал сложной функции Условие существования производной сложной функции

Инвариантность формы первого дифференциала функции Следствие (инвариантность формы первого дифференциала относительно преобразования независимой переменной)

Гиперболические функции и их производные Функции   называются соответственно гиперболическим косинусом и гиперболическим синусом.

Определение производных высших порядков

Производные высших порядков суммы и произведения функций

Производные высших порядков от сложных функций

Производные высших порядков от обратных функций и от функций, заданных параметрически

Выведем формулы для дифференцирования параметрически заданных функций.

Дифференциалы высших порядков

Теоремы о среднем для дифференцируемых функций

Теорема Ферма В терминах производных оказывается удобным описывать различные свойства функций. Прежде всего, укажем характеристическое свойство точек, в которых функция принимает наибольшее или наименьшее значение

Теорема Ролля

Теорема Лагранжа

Геометрический смысл теоремы Лагранжа

Отметим два следствия из теоремы Лагранжа, полезные для дальнейшего. Следствие 1. Если функция f непрерывна на некотором промежутке (конечном или бесконечном) и во всех его внутренних точках имеет производную, равную нулю, то функция постоянна на этом промежутке.

Теорема Коши

О правилах Лопиталя Ранее при изучении пределов мы рассматривали неопределённости различных видов и учились раскрывать их, используя для этого специальные приёмы. Дифференциальное исчисление позволяет построить более универсальные методы вычисления неопределённых пределов.

Некоторые из них, носящие общее название правил существует конечный или бесконечный, равный +¥ или –¥, предел .

Неопределённости вида

Вывод формулы Тейлора

Формула называется формулой Тейлора n-го порядка с остаточным членом в форме Пеано.

Следствие. Пусть функция  определена на интервале , и пусть в точке x0 она имеет производные до порядка n+1 включительно.

Многочлен Тейлора как многочлен наилучшего приближения функции в окрестности данной точки

Разложение основных элементарных функций по формуле Маклорена

Часто бывает удобно для разложения функций f и g по формуле Тейлора использовать готовый набор разложений элементарных функций. Для этого следует в случае x0¹0 предварительно выполнить замену переменного t=x–x0; тогда x®x0 будет соответствовать t®0. Случай x®¥ заменой переменного x=1/t сводится к случаю t®0.

Исследование поведения функции Признак монотонности функции Для того чтобы непрерывная на некотором промежутке функция, дифференцируемая во всех его внутренних точках, возрастала (убывала) на этом промежутке, необходимо и достаточно, чтобы производная функции была во всех внутренних точках промежутка неотрицательна (неположительна).

Отыскание наибольших и наименьших значений функции

Выпуклость и точки перегиба Всякий интервал, на котором функция (строго) выпукла вверх, соответственно вниз, называется интервалом (строгой) выпуклости вверх, соответственно вниз, этой функции. Теорема (необходимое условие, выполняющееся в точке перегиба).

Если в точке перегиба функции существует вторая производная, то она равна нулю.

Общая схема построения графиков функции Асимптоты

Построение графиков функций Изучение заданной функции и построение её графика целесообразно проводить в следующем порядке

Неопределенный интеграл

Определение и свойства неопределенного интеграла Первообразная и неопределённый интеграл

В этом подразделе рассматривается задача отыскания функции, для которой заданная функция является производной.

Основные свойства интеграла Все рассматриваемые в этом пункте функции определены на некотором фиксированном промежутке D. Если функция F дифференцируема на некотором промежутке, то на нём   или, что то же самое, .

Табличные интегралы Операция нахождения неопределённого интеграла от данной функции, называемая интегрированием, является действием, обратным дифференцированию, т. е. операции нахождения по данной функции её производной. Поэтому всякая формула, выражающая производную той или иной функции, т. е. формула вида , может быть обращена (записана в виде интегральной формулы) .

Нахождение неопределенных интегралов Интегрирование подстановкой

Интегрирование по частям Если функции  и  дифференцируемы на некотором промежутке и на этом промежутке существует интеграл , то на нём существует и интеграл , причём .

Интегрирование рациональных функций Переходим к изучению вопроса об интегрировании рациональных функций вида , где  – некоторые многочлены.

Интегрирование трансцендентных функций