Математика примеры решения задач

Информатика Учебник по программированию

ОСНОВНЫЕ СВОЙСТВА ДЛИНЫ

Пусть отрезок АВ составлен из двух частей АС и СВ, как на рисунке 1. Тогда длина отрезка АВ равна сумме длин отрезков АС и СВ.

В этом очень легко убедиться на примере отрезков на клетчатой бумаге, измеряемых в шагах сетки. Если на рисунке 2 подсчитать число шагов, то получится | АС\ = = 5, \СВ\ = 1, \АВ\ = 6. Видно, что выполняется равенство \АВ\ = \АС\ 4- \СВ\.

Точно так же проверяются равенства \МК\ = \MN\ + \NK\, \PR\ = \PQ\ + \QR\ на рисунках 3 и 4.

Если взять точку ?), не лежащую на отрезке АВ, как, например, на рисунке 5, то непосредственные измерения линейкой показывают, что в таком случае выполняется неравенство \AD\ 4- \DB\ > \АВ\.

Экспериментальная проверка затруднительна, когда D находится очень близко к отрезку АВ, как на рисунке б, и длина AD очень мало отличается от суммы \AD\ + \DB\.

Сформулируем два основных свойства длины.

1.    Для точки С, лежащей на отрезке АВ,

выполняется равенство

\АС\ + \СВ\ = \АВ\.

2.    Для точки D, не лежащей на отрезке

АВ, выполняется неравенство

\AD\ + \DB\ > \АВ\.

Вопрос. Чем отличаются первое и второе свойства длины?

2.2. Вместе с первым основным свойством длины верно и такое утверждение: если для точки С выполняется равенство \АС\ + \СВ\ = |АВ|, то эта точка лежит на отрезке АВ. Поэтому точки отрезка АВ

— это все такие точки С, для которых выполняется равенство \АС\ + \СВ\ = \АВ\. Таким образом, понятие длины позволяет отличить точки отрезка от всех остальных точек.

Вопрос. Каким свойством характеризуются точки, не лежащие на отрезке?

Контрольные вопросы

1.    Как обозначаются отрезок и его длина?

2.    В чем состоят основные свойства длины отрезков?

3.    Какое свойство характеризует точки, лежащие на отрезке?

Задачи и упражнения

1.    На отрезке АС выбрана точка В так, что длина АВ равна 8 см, а длина ВС на 3 см меньше. Чему равна длина АС?

2.    На отрезке АВ длины 15 см выбрана точка С так, что длина АС на 3 см больше длины ВС. Найдите длину АС.

3.    На отрезке AD выбраны точки В и С так, что В лежит между А и С. Длина АС равна 6 см; длина АВ на 2 см меньше длины ВС; длина CD в два раза больше длины АВ. Найдите \AD\.

4.    Отметьте на листе бумаги две точки А и В на расстоянии 3 см друг от друга. С помощью линейки найдите такую точку С, что \АС\ = 2 см, \ВС\ = 1 см.

5? Для точек А и В из предыдущей задачи найдите такую точку D, что \AD\ = 2 см, \BD\ = 5 см.

6* Даны точки А, В и С, причем \АВ\ = 3 см, \АС\ = 4 см, \ВС\ = = 5 см. Может ли точка А лежать на отрезке ВС?

7* Существует ли треугольник, длины сторон которого равны 2 см,

3 см и 8 см?

8?* Что длиннее: сторона квадрата или его диагональ? Проверьте ответ непосредственным измерением.

9* Может ли диагональ ромба быть короче его стороны?

$ ¦

10. Имеется линейка, на которой остались только отметки 0, 1, 3, 7 и 15 см. Отрезки какой длины можно точно измерить, прикладывая линейку один раз?

Физические основы механики Примеры решения задач

Кинематика Основные формулы

Положение материальной точки в пространстве задается радиусом-вектором г:

Кинематическое уравнение равномерного движения материальной точки вдоль оси х

Угловая скорость тела при равнопеременном вращении

Примеры решения задач

Пример 1. Кинематическое уравнение движения материальной точки по прямой (ось х) имеет вид x=A+Bt+Ct3, где A=4 м, B=2 м/с, С=-0,5 м/с2. Для момента времени t1=2 с определить: 1) координату x1 точки, 2) мгновенную скорость v1, 3) мгновенное ускорение a1.

Решение. 1. Координату точки, для которой известно кинематическое уравнение движения, найдем, подставив в уравнение движения вместо t заданное значение времени t1: x=A+Bt+Ct3. Подставим в это выражение значения A, В, С, t1 и произведем вычисления: X1=(4+4- 0,5 23) м=4 м.

Кинетическая теория газа Основное уравнение молекулярно-кинетической теории газов для давления связывает параметры состояния идеального газа с характеристиками движения его молекул:

Пример 2. Кинематическое уравнение движения материальной точки по прямой (ось х) имеет вид, x=A+Bt+Ct2, где A=5 м, B=4 м/с, С=-1 м/с2. Построить график зависимости координаты х и пути s от времени. 2. Определить среднюю скорость <vx> за интервал времени от t1=1 с до t2=6 с. 3. Найти среднюю путевую скорость <v> за тот же интервал времени.

Решение. 1. Для построения графика зависимости координаты точки от времени найдем характерные значения координаты — начальное и максимальное и моменты времени, соответствующие указанным координатам и координате, равной нулю.

Пример 3. Автомобиль движется по закруглению шоссе, имеющему радиус кривизны R=50 м. Уравнение * движения автомобиля (t)=A+Bt+Ct2, где A=10 м, B=10 м/с, С=—0,5 м/с2. Найти: 1) скорость v автомобиля, его тангенциальное , нормальное аn. и полное а ускорения в момент времени t=5 с; 2) длину пути s и модуль перемещения || автомобиля за интервал времени =10 с, отсчитанный с момента начала движения.

Решение. 1. Зная уравнение движения, найдем скорость, взяв первую производную от координаты по времени:

. Подставим в это выражение значения В, С, t и произведем вычисления: v=5 м/с. Тангенциальное ускорение найдем, взяв первую производную от скорости по времени:   Подставив значение С, получим = —1 м/с2.

Нормальное ускорение определяется по формуле an=v2/R. Подставим сюда найденное значение скорости и заданное значение радиуса кривизны траектории и произведем вычисления:

Пример 4. Маховик, вращавшийся с постоянной частотой n0=10 с1, при торможении начал вращаться равнозамедленно. Когда торможение прекратилось, вращение маховика снова стало равномерным, но уже с частотой п=6 с1. Определить угловое ускорение   маховика и продолжительность t торможения, если за время равнозамедленного движения маховик сделал N==50 оборотов.

Зависимость ускорения от времени при некотором движении тела представлена на рис. 1.5. Определить среднюю путевую скорость <v> за время t=8 с. Начальная скорость v0=0.

равнение прямолинейного движения имеет вид x=At+Bt2, где A=3 м/с, B=—0,25 м/с2. Построить графики зависимости координаты и пути от времени для заданного движения.

На рис. 1.5 дан график зависимости ускорения от времени для некоторого движения тела. Построить графики зависимости скорости и пути от времени для этого движения, если в начальный момент тело покоилось.

Движение точки по окружности радиусом R=4 м задано уравнением * =A+Bt+Ct2, где A=10 м, В=—2 м/с, С=1 м/с2. Найти тангенциальное а, нормальное an и полное а ускорения точки в момент времени t=2с.

Пуля пущена с начальной скоростью v0=200 м/с под углом =60° к горизонту. Определить максимальную высоту Н подъема, дальность s полета и радиус R кривизны траектории пули в ее наивысшей точке. Сопротивлением воздуха пренебречь.

Сила трения скольжения Потенциальная энергия упругодеформированного тела (сжатой или растянутой пружины) П=kx2/2.

Потенциальная энергия гравитационного взаимодействия двух материальных точек (или тел) массами m1, и т2, находящихся на расстоянии r друг от друга,

Потенциальная энергия тела, находящегося в однородном поле силы тяжести, П=mgh,

Пример 2. В лифте на пружинных весах находится тело массой т=10 кг (рис. 2.2, а). Лифт движется с ускорением а=2 м/с2. Определить показания весов в двух случаях, когда ускорение лифта направлено: 1) вертикально вверх, 2) вертикально вниз.

Пример 3. При падении тела с большой высоты его скорость vуст установившемся движении достигает 80 м/с. Определить время , в течение которого начиная от момента начала падения скорость становится равной 1/2 vуст. Силу сопротивления воздуха принять пропорциональной скорости тела.

Решение. На падающее тело действуют две силы сила тяжести mg и сила сопротивления воздуха Fc.

Пример 4. Шар массой m=0,3 кг, двигаясь со скоростью v=10 м/с, упруго ударяется о гладкую неподвижную стенку так, что скорость его направлена под углом  =30° к нормали. Определить импульс р, получаемый стенкой.

Решение. Сначала проанализируем условие задачи. Стенка неподвижна, поэтому система отсчета, связанная с ней, будет инерциальной. Удар о стенку упругий; следовательно, можно воспользоваться законом сохранения механической энергии. Из него, учитывая, что масса стенки много больше массы шара, следует равенство модулей скоростей шара |v| до и |u| после удара.

Пример 5. На спокойной воде пруда стоит лодка длиной L и массой М перпендикулярно берегу, обращенная к нему носом. На корме стоит человек массой т. На какое расстояние s приблизится лодка к берегу, если человек перейдет с кормы на нос лодки? Трением о воду и воздух пренебречь.

Решение. 1. Неупругие шары не восстанавливают после удара своей первоначальной формы. Следовательно, не возникают силы, отталкивающие шары друг от друга, и шары после удара будут двигаться совместно с одной и той же скоростью и. Определим эту скорость по закону сохранения импульса. Так как шары движутся по одной прямой, то этот закон можно записать в скалярной форме: m1v1+т2v2=(т1+m2)и, откуда u=( m1v1+т2v2)/(т1+m2).

Направление скорости первого шара примем за положительное, тогда при вычислении скорость второго шара, который движется навстречу первому, следует взять со знаком минус: u=(2,5 6—1,5 2)/(2,5+1,5) м/с=3 м/с.

Пример 8. Молот массой m1=200 кг падает на поковку, масса т2, которой вместе с наковальней равна 2500 кг. Скорость v1 молота в момент удара равна 2 м/с. Найти: 1) кинетическую энергию T1 молота в момент удара; 2) энергию Т2, переданную фундаменту; 3) энергию Т, затраченную на деформацию поковки; 4) коэффициент полезного действия  (КПД) удара молота о поковку. Удар молота о поковку рассматривать как неупругий.

Пример 9. Боек (ударная часть) свайного молота массой т1 =500 кг падает на сваю массой m2=100 кг со скоростью v1=4 м/с. Определить: 1) кинетическую энергию T1 бойка в момент удара; 2) энергию T2, затраченную на углубление сваи в грунт; 3) кинетическую энергию Т, перешедшую во внутреннюю энергию системы; 4) КПД  удара бойка о сваю. Удар бойка о сваю рассматривать как неупругий.

Решение. 1. Кинетическую энергию бойка в момент удара о сваю находим по формуле T1=m1v12/2. Подставив значения m1, и v1 и произведя вычисления, получим T1=(500× 42)/2 Дж=4000 Дж=4 кДж.

2. Чтобы определить энергию, затраченную на углубление сваи, предварительно найдем скорость системы боек — свая непосредственно после удара. Для этого применим закон сохранения импульса, который в случае неупругого удара выражается формулой т1v1+m2v2=(m1+m2)u,  (1)

Второй закон Ньютона На гладком столе лежит брусок массой m=4 кг. К бруску привязан шнур, ко второму концу которого приложена сила F=10 Н, направленная параллельно поверхности стола. Найти ускорение а бруска.

На горизонтальной поверхности находится бросок массой m1=2 кг. Коэффициент трения f1 бруска о поверхность равен 0,2. На бруске находится другой брусок массой m2=8 кг. Коэффициент трения f2 верхнего бруска о нижний равен 0,3. К верхнему бруску приложена сила F. Определить: 1) значение силы F1, при котором начнется совместное скольжение брусков по поверхности; 2) значение силы F2, при котором верхний брусок начнет проскальзывать относительно нижнего.

Закон сохранения импульса Шар массой m=10 кг, движущийся со скоростью v1=4 м/с, сталкивается с шаром массой m=4 кг, скорость v2 которого равна 12 м/с. Считая удар прямым, неупругим, найти скорость и шаров после удара в двух случаях: 1) малый шар нагоняет большой шар, движущийся в том же направлении; 2) шары движутся навстречу друг другу. При насадке маховика на ось центр тяжести оказался на расстоянии r=0,1 мм от оси вращения. В каких пределах меняется сила F давления оси на подшипники, если частота вращения маховика n= 10 с1? Масса т маховика равна 100 кг.

Работа и энергия Под действием постоянной силы F вагонетка прошла путь s=5 м и приобрела скорость v=2 м/с. Определить работу A силы, если масса т вагонетки равна 400 кг и коэффициент трения f=0,01.

Молекула распадается на два атома. Масса одного из атомов в п=3 раза больше, чем другого. Пренебрегая начальной кинетической энергий и импульсом молекулы, определить кинетические энергии T1 и T2 атомов, если их суммарная кинетическая энергия T=0,032 нДж.

Динамика вращательного движения твердого тела вокруг неподвижной оси

Момент силы F, действующей на тело, относительно оси вращения ,

Теорема Штейнера. Момент инерции тела относительно произвольной оси

Работа и мощность

Пример 2. Физический маятник представляет собой стержень длиной l=1 м и массой m1=l кг с прикрепленным к одному из его концов диском массой т2=0,5 m1. Определить момент инерции Jz такого маятника относительно оси Оz, проходящей через точку О на стержне перпендикулярно плоскости чертежа.

Пример 3. Вал в виде сплошного цилиндра массой m1=10 кг насажен на горизонтальную ось. На цилиндр намотан шнур, к свободному концу которого подвешена гиря массой m2=2 кг. С каким ускорением а будет опускаться гиря, если ее предоставить самой себе?

Решение. Линейное ускорение а гири равно тангенциальному ускорению точек вала, лежащих на его цилиндрической поверхности, и связано с угловым ускорением s вала соотношением

а=,  (1)

где r — радиус вала.

Угловое ускорение вала выражается основным уравнением динамики вращающегося тела

Решение. Применим к решению задачи основные законы поступательного и вращательного движения. На каждый из движущихся грузов действуют две силы: сила тяжести mg, направленная вниз, и сила Т натяжения нити, направленная вверх. По второму закону динамики вращательного движения, изменение момента импульса вращающегося тела равно произведению момента силы, действующего на тело, на время действия этого момента:

Пример 6. Платформа в виде диска радиусом R= 1,5 м и массой m1=180 кг вращается по инерции около вертикальной оси с частотой n=10 мин-1. В центре платформы стоит человек массой т2=60 кг. Какую линейную скорость относительно пола помещения будет иметь человек, если он перейдет на край платформы?

Линейная скорость человека, стоящего на краю платформы, связана с угловой скоростью соотношением

Пример 7. Человек стоит в центре скамьи Жуковского и вместе с ней вращается по инерции. Частота вращения n1=0,5 c-1. Момент инерции jo тела человека относительно оси вращения равен 1,6 кг м2. В вытянутых в стороны руках человек держит по гире массой m=2 кг каждая. Расстояние между гирями l1=l,6 м. Определить частоту вращения n2, скамьи с человеком, когда он опустит руки и расстояние l2 между гирями станет равным 0,4 м. Моментом инерции скамьи пренебречь.

Пример 8. Стержень длиной l=1,5 м и массой М=10 кг может вращаться вокруг неподвижной оси, проходящей через верхний конец стержня. В середину стержня ударяет пуля массой m=10 г, летящая в горизонтальном направлении со скоростью vo=500 м/с, и застревает в стержне. На какой угол  отклонится стержень после удара?

Решение. Удар пули следует рассматривать как неупругий: после удара и нуля, и соответствующая точка стержня будут двигаться с одинаковыми скоростями.

Рассмотрим подробнее явления, происходящие при ударе. Сначала пуля, ударившись о стержень, за ничтожно малый промежуток времени приводит его в движение с угловой скоростью  и сообщает ему кинетическую энергию

Момент инерции Определить момент инерции J материальной точки массой m=0,3 кг относительно оси, отстоящей от точки на r=20 см. Два маленьких шарика массой m=10 г каждый скреплены тонким невесомым стержнем длиной l=20 см. Определить момент инерции J системы относительно оси, перпендикулярной стержню и проходящей через центр масс. Определить момент инерции J проволочного равностороннего треугольника со стороной а=10 см относительно: 1) оси, лежащей в плоскости треугольника и проходящей через его вершину параллельно стороне, противоположной этой вершине; 2) оси, совпадающей с одной из сторон треугольника (рис. 3.10, б). Масса т треугольника равна 12 г и равномерно распределена по длине проволоки.

Основное уравнение динамики вращательного движения

Тонкий однородный стержень длиной l=1 м может свободно вращаться вокруг горизонтальной оси, проходящей через точку О на стержне. Стержень отклонили от вертикали на угол а и отпустили. Определить для начального момента времени угловое в и тангенциальное аt ускорения точки В на стержне. Вычисления произвести для следующих случаев:

Через блок, имеющий форму диска, перекинут шнур. К концам шнура привязали грузики массой m1=100 г и т2=110 г. С каким ускорением а будут двигаться грузики, если масса т блока равна 400 г? Трение при вращении блока ничтожно мало.

Человек стоит на скамье Жуковского и ловит рукой мяч массой т=0,4 кг, летящий в горизонтальном направлении со скоростью υ=20 м/с. Траектория мяча проходит на расстоянии r =0,8 м от вертикальной оси вращения скамьи. С какой угловой скоростью w начнет вращаться скамья Жуковского с человеком, поймавшим мяч, если суммарный момент инерции J человека и скамьи равен 6 кг-м2?

Якорь мотора вращается с частотой n=1500 мин-1. Определить вращающий момент М, если мотор развивает мощность N=500 Вт.

Силы в механике Закон всемирного тяготения где F — сила взаимного притяжения двух материальных точек; m1 и m2 — их массы; r — расстояние между точками; G — гравитационная постоянная.

Законы Кеплера.

1. Планеты движутся по эллипсам, в одном из фокусов которых находится Солнце.

2. Радиус-вектор планеты в равные времена описывает одинаковые площади.

3. Квадраты периодов обращения любых двух планет относятся как кубы больших полуосей их орбит: Законы Кеплера справедливы также для движения спутников вокруг планеты.

Примеры решения задач

Пример 1. Определить вторую космическую скорость υ2 ракеты, запущенной с поверхности Земли.

Примечание. Второй космической (или параболической) скоростью υ2 называется минимальная скорость, которую нужно сообщить телу, чтобы оно удалилось с поверхности Земли в бесконечность (при этом сопротивление воздуха в расчет не принимается и предполагается, что на тело действует только поле тяготения Земли).

Решение. При удалении тела массой т в бесконечность его потенциальная энергия возрастает за счет убыли кинетической энергии и в бесконечности достигает максимального значения, равного нулю. Согласно определению второй космической скорости, кинетическая энергия в бесконечности также равна нулю. Таким образом, в бесконечности Т∞=0 и П∞ =0. В соответствии с законом сохранения энергии в механике

Пример 3. Найти выражение для потенциальной энергии П гравитационного взаимодействия Земли и тела массой m, находящегося на расстоянии r от центра Земли за пределами ее поверхности. Построить график П(r).

Решение. Потенциальная энергия в поле консервативных сил (гравитационные силы консервативны) связана с силой следующим соотношением: Потенциальная энергия гравитационного взаимодействия тел, бесконечно удаленных друг от друга, принимается равной нулю

Пример 4. В гравитационном поле Земли тело массой m перемещается из точки 1 в точку 2 (рис. 4.5). Определить скорость v2 тела в точке 2, если в точке 1 его скорость

Ускорение свободного падения g считать известным.

Решение. Система тело — Земля является замкнутой, в которой действует

Пример 5. Вычислить работу А12 сил гравитационного поля Земли при перемещении тела массой m=10 кг из точки 1 в точку 2 (рис. 4.5). Радиус R земли и ускорение g свободного падения вблизи поверхности Земли считать известными.

Решение. Для решения задачи воспользуемся соотношением между работой А и изменением ΔП потенциальной энергии. Так как силы системы — гравитационные — относятся к силам консервативным, то работа сил поля совершается за счет убыли потенциальной энергии, т. е.   (1) где П1 и П2 — потенциальные энергии системы тело — Земля соответственно в начальном и конечном ее состояниях.

Решение. 1. Нормальное напряжение материала растянутого стержня выражается формулой σ=F/S, где F — сила, действующая вдоль оси стержня. В данном случае F равна силе тяжести mg и поэтому можем записать

Сделав вычисления, найдем

2. Абсолютное удлинение выражается формулой

где Е — модуль Юнга.

Силы тяготения. Гравитационное поле

Искусственный спутник движется вокруг Земли по эллипсу с эксцентриситетом ε=0,5. Во сколько раз линейная скорость спутника в перигее (ближайшая к центру Земли точка орбиты спутника) больше, чем в апогее (наиболее удаленная точка орбиты)? Указание. Применить  закон сохранения момента импульса.

Радиус R малой планеты равен 100 км, средняя плотность ρ вещества планеты равна 3 г/см3. Определить параболическую скорость υ2 у поверхности этой планеты.

Модуль упругости. Жесткость К вертикальной проволоке длиной l=5 м и площадью поперечного сечения S=2 мм2 подвешен груз массой m=5,1 кг. В результате проволока удлинилась на x=0,6 мм. Найти модуль Юнга Е материала проволоки.

Работа упругой силы. Энергия деформированного тела

Релятивисткая механика. Релятивистское (лоренцево) сокращение длины стержня

Примеры решения задач

Пример. Космический корабль движется со скоростью υ=0,9 с по направлению к центру Земли. Какое расстояние l пройдет этот корабль в системе отсчета, связанной с Землей (K-система), за интервал времени Δt0=1 с, отсчитанный по часам, находящимся в космическом корабле (K'-система)? Суточным вращением Земли и ее орбитальным движением вокруг Солнца пренебречь.

Пример. Кинетическая энергия Т электрона равна 1 МэВ. Определить скорость электрона.

Решение.  Релятивистская формула кинетической энергии

Выполнив относительно β преобразования, найдем скорость частицы, выраженную в долях скорости света (β=υ/c):

  (1) где E0 — энергия покоя электрона

Пример 5. Релятивистская частица с кинетической энергией T=т0c2 (m0 — масса покоя частицы) испытывает неупругое столкновение с такой же покоящейся (в лабораторной системе отсчета) частицей. При этом образуется составная частица. Определить: 1) релятивистскую массу т движущейся частицы; 2) релятивистскую массу т' и массу покоя m0' составной частицы; 3) ее кинетическую энергию Т'.

Релятивистское изменение длин и интервалов времени

Предположим, что мы можем измерить длину стержня с точностью Δl=0,1 мкм. При какой относительной скорости и двух инерциальных систем отсчета можно было бы обнаружить релятивистское сокращение длины стержня, собственная длина l0 которого равна 1 м?

Релятивистская масса и релятивистский импульс

Частица движется со скоростью υ=0,5 с. Во сколько раз релятивистская масса частицы больше массы покоя?

Кинетическая энергия релятивистской частицы

Кинетическая энергия Т электрона равна 10 МэВ. Во сколько раз его релятивистская масса больше массы покоя? Сделать такой же подсчет для протона.

Механические колебания Основные формулы

Уравнение гармонических колебаний  где х — смещение колеблющейся точки от положения равновесия; t — время; А, ω, φ— соответственно амплитуда, угловая частота, начальная фаза колебаний;   — фаза колебаний в момент t. Угловая частота колебаний Дифференциальное уравнение гармонических колебаний материальной точки   , или  , где m — масса точки; k — коэффициент квазиупругой силы (k=тω2).

Полная энергия материальной точки, совершающей гармонические колебания,

• Период колебаний тела, подвешенного на пружине (пружинный маятник),

• Логарифмический декремент колебаний  где A (t) и A (t+T) — амплитуды двух последовательных колебаний, отстоящих по времени друг от друга на период.

Дифференциальное уравнение вынужденных колебаний

Чтобы выразить скорость через смещение, надо исключить из формул (1) и (2) время. Для этого возведем оба уравнения в квадрат, разделим первое на А2, второе на A2 ω 2 и сложим:  , или  

Решив последнее уравнение относительно υ, найдем

Выполнив вычисления по этой формуле, получим   см/с.

Пример 3. На концах тонкого стержня длиной l = 1 м и массой m3=400 г укреплены шарики малых размеров массами m1=200 г и m2=300г. Стержень колеблется около горизонтальной оси, перпендикулярной стержню и проходящей через его середину (точка О на рис. 6.2). Определить период Т колебаний, совершаемых стержнем.

  Решение. Период колебаний физического маятника, каким является стержень с шариками, определяется соотношением

  (1)

где J — момент инерции маятника относительно оси колебаний; т — его масса; lС — расстояние от центра масс маятника до оси.

Момент инерции данного маятника равен сумме моментов инерции шариков J1 и J2 и стержня J3:

 (2)

Принимая  шарики за материальные точки, выразим моменты их инерции:

Так как ось проходит через середину стержня, то его момент инерции относительно этой оси J3= = . Подставив полученные выражения J1 , J2 и J3 в формулу (2), найдем общий момент инерции фи- зического маятника:

 

Пример 4. Физический маятник представляет собой стержень длиной l= 1 м и массой 3т1 с прикрепленным к одному из его концов обручем диаметром  и массой т1. Горизонтальная ось Oz маятника проходит через середину стержня перпендикулярно ему (рис. 6.3). Определить период Т колебаний такого маятника.

Решение. Период колебаний физического маятника определяется по формуле   (1)

Пример 5. Складываются два колебания одинакового направления, выражаемых уравнениями ; х2= =, где А1=1 см, A2=2 см,  с,  с, ω = =. 1. Определить начальные фазы φ1 и φ 2 составляющих колебаний.

2. Найти амплитуду А и начальную фазу φ результирующего колебания. Написать уравнение результирующего колебания.

Решение. 1. Уравнение гармонического колебания имеет вид   (1)

Преобразуем уравнения, заданные в условии задачи, к такому же виду:  (2)

Пример 6. Материальная точка участвует одновременно в двух взаимно перпендикулярных гармонических колебаниях, уравнения которых  (1).   (2)

где a1=1 см, A2=2 см, . Найти уравнение траектории точки. Построить траекторию с соблюдением масштаба и указать направление движения точки.

Решение. Чтобы найти уравнение траектории точки, исключим время t из заданных уравнений (1) и (2). Для этого восполь>зуемся формулой  .

Задачи

Кинематика гармонических колебаний

Уравнение колебаний точки имеет вид , где ω=π с-1, τ=0,2 с. Определить период Т и начальную фазу колебаний.

Два камертона звучат одновременно. Частоты ν1 и ν2 их колебаний соответственно равны 440 и 440,5 Гц. Определить период Т биений.

Динамика гармонических колебаний.  Маятники

Материальная точка массой т=50 г совершает колебания, уравнение которых имеет вид х=А cos ωt, где А = 10 см, ω=5 с-1. Найти силу F, действующую на точку, в двух случаях: 1) в момент, когда фаза ωt=π/3; 2) в положении наибольшего смещения точки.

Однородный диск радиусом R=30 см колеблется около горизонтальной оси, проходящей через одну из образующих цилиндрической поверхности диска. Каков период Т его колебаний?

Диск радиусом R=24 см колеблется около горизонтальной оси, проходящей через середину одного из радиусов перпендикулярно плоскости диска. Определить приведенную длину L и период Т колебаний такого маятника.

Из тонкого однородного диска радиусом R=20 см вырезана часть, имеющая вид круга радиусом r=10 см, так, как это показано на рис. 6.7. Оставшаяся часть диска колеблется относительно горизонтальной оси О, совпадающей с одной из образующих цилиндрической поверхности диска. Найти период Т колебаний такого маятника.

Затухающие колебания

Основные формулы

Уравнение плоской волны

Энергия звукового поля, заключенного в некотором объеме V

Примеры решения задач

Поперечная волна распространяется вдоль упругого шнура со скоростью =15 м/с. Период Т колебаний точек шнура равен 1,2 с, амплитуда A=2 см. Определить: 1) длину волны ; 2) фазу  колебаний, смещение , скорость , и ускорение , точки, отстоящей на расстоянии х=45 м от источника волн в момент t=4 с; 3) разность фаз  колебаний двух точек, лежащих на луче и отстоящих от источника волн на расстояниях x1=20 м и x2=30 м.

Решение. 1. Длина волны равна расстоянию, которое волна проходит за один период, и может быть найдена из соотношения

Запишем уравнение волны: Решение. Выберем систему координат так, чтобы ось х была направлена вдоль луча бегущей волны и начало О координат совпадало с точкой, находящейся на источнике MN плоской волны. С учетом этого, уравнение бегущей волны запишется в виде

Источник звука частотой v=18 кГц приближается к неподвижно установленному резонатору, настроенному на акустическую волну длиной = 1,7 см. С какой скоростью должен двигаться источник звука, чтобы возбуждаемые им звуковые волны вызвали колебания резонатора? Температура T воздуха равна 290 К.

Уравнение плоской волны Показать, что выражение х,t)=Acos(t—kx) удовлетворяет волновому уравнениюпри условии, что k.

Суперпозиция волн Имеются два источника, совершающие колебания в одинаковой фазе и возбуждающие в окружающей среде плоские волны одинаковой частоты и амплитуды (A1=A2=1 мм). Найти амплитуду А колебаний точки среды, отстоящей от одного источника колебаний на расстоянии x1=3,5 м и от другого — на x2=5,4 м. Направления колебаний в рассматриваемой точке совпадают. Длина волны =0,6 м.

Стоячая волна образуется при наложении бегущей волны и волны, отраженной от границы раздела сред, перпендикулярной направлению распространения волны. Найти положения (расстояния от границы раздела сред) узлов и пучностей стоячей волны

Эффект Доплера Поезд проходит мимо станции со скоростью u=40 м/с. Частота v0 тона гудка электровоза равна 300 Гц. Определить кажущуюся частоту v тона для человека, стоящего на платформе, в двух случаях: 1) поезд приближается; 2) поезд удаляется. Мимо неподвижного электровоза, гудок которого дает сигнал частотой v0=300 Гц, проезжает поезд со скоростью и=40 м/с. Какова кажущаяся частота v тона для пассажира, когда поезд приближается к электровозу? когда удаляется от него?

Звуковое давление. Акустическое сопротивление

Определить удельное акустическое сопротивление Zs воздуха при нормальных условиях.