Математика примеры решения задач

РЕШЕНИЕ ТИПОВЫХ ПРИМЕРОВ

Упражнение 1. Найти указанные пределы.

Решение:

 

При подстановке вместо переменно х ее предельного значения 3 получается неопределенность вида . Для избавления от этого типа неопределенности в этом случае представим квадратные трехчлены числителя и знаменателя в виде произведения линейных множителей, воспользовавшись известной формулой , где - корни квадратного трехчлена . У нас , т.к. дискриминант квадратного трехчлена , а следовательно,  .

Аналогично .

Теперь условие примера можно переписать а другом виде и продолжить решение:

.

.

Здесь сталкиваемся с неопределенностью вида , избавиться от которой можно вынесением за скобки в числителе и знаменателе дроби старшей степени переменной: .

.

В данном случае для освобождения от возникшей неопределенности вида будем использовать I замечательный предел и одно из его очевидных следствий:

.

Решение примера будет выглядеть следующим образом:

Упражнение 2. Найти производные, пользуясь правилами и формулами дифференцирования.

Решение:

Кроме формул дифференцирования нужно использовать правила дифференцирования (суммы, разности, произведения, частного).

Необходима и теорема о производной сложной функции:

если задана сложная функция , где , то есть ; если каждая из функций  и  дифференцируема по своему аргументу, то

.

, ,

.

,