Термоядерный синтез Ядерные реакции в звездах Токамак Реакторная технология Холодный термоядерный синтез Атомные реакторы на быстрых нейтронах Топливо для реакторов на тепловых нейтронах

Управляемый термоядерный синтез - это синтез легких ядер с целью получения энергии. То есть создания плазмы при облучении твердой мишени'(крупинки смеси дейтерия и трития) сфокусированным излучением мощного лазера или электронными пучками. Цепные ядерные реакции - это самоподдерживающиеся реакции деления атомных ядер под действием нейтронов
Токамак

В установках типа токамак плазму создают внутри тороидальной камеры с помощью безэлектродного кольцевого разряда. С этой целью в плазменном сгустке создают электрический ток, и при этом, как у всякого тока, у него появлялось собственное магнитное поле - сгусток плазмы как бы сам становится магнитом. Теперь с помощью внешнего магнитного поля определенной конфигурации можно подвесить плазменное облако в центре камеры, не позволяя ему соприкасаться со стенками.

В токамаке, в сущности, заложен принцип трансформатора. Разреженная смесь дейтерия и трития (смесь должна быть сильно разреженной, чтобы исключить большие давления при миллионной температуре) помещается в тороидальную трубку. Трубка в свою очередь помещается в сильное магнитное поле. В трубке создается сильное вихревое электрическое поле (как в мощном понижающем трансформаторе), которое вызывает в газе ток порядка миллиона ампер. Магнитное поле, удерживающее плазму, создается как за счет тока, протекающего через обмотку вокруг камеры, так и за счет тока, индуцированного в плазме. Для получения более устойчивой плазмы используется внешнее продольное магнитное поле.

Вакуумная камера в форме тора заполнена смесью изотопов водорода и свободных электронов. Она охватывает стальной сердечник, играя роль вторичной обмотки трансформатора (Рис.15). На первичную обмотку подается переменное напряжение, индуцирующее в камере электрический ток - движение электронов. Сталкиваясь с атомами, электроны высокой энергии ионизуют их - сила тока возрастает. В камере возникает плазма. На камеру надеты обмотки тороидального поля, которое сжимает плазму в шнур. Поле катушек удерживает плазменный шнур в центре камеры, не давая ему коснуться стенок.

Камера в токамаке - тороидальная, то есть по форме напоминает бублик (Рис.16). Из камеры откачивают воздух, чтобы посторонние атомы не вмешивались в процесс, а затем в нее вводят дейтерий-тритиевую смесь. Снаружи расположены катушки, подключенные к переменному электрическому напряжению. Подобно первичной обмотке трансформатора, они создают
кольцевой ток в водородной плазме. В газе всегда есть свободные ионы и электроны, которые начинают двигаться в камере по кругу, как в короткозамкнутой вторичной трансформаторной обмотке. Этот ток нагревает газ, количество ионизированных атомов растет, одновременно увеличивается сила тока и повышается температура плазмы. А значит, количество водородных ядер, слившихся в ядро гелия и выделивших энергию, становится все больше.

Теперь с помощью внешнего магнитного поля определенной конфигурации можно подвесить плазменное облако в центре камеры, не позволяя ему соприкасаться со стенками Основной нагрев идет за счет джоулева тепловыделения. Сильно нагреваются прежде всего электроны плазмы, менее - ионы. Передача энергии от электронов к ионам идет медленно (из-за малости потока энергии)

Омический нагрев плазмы в токамаке недостаточен для осуществления реакции термоядерного синтеза. Создание термоядерного реактора натолкнулось на ряд технологических трудностей

Стелларатор Здесь, как и в ТОКАМАКе, плазма тоже подвешена в магнитном поле, но тока в ней нет. Греют плазму в основном мощным радиоизлучением, а держат ее только сложной формы магнитные поля, созданные внешними катушками. Открытая ловушка В установке типа открытой ловушки (пробкотрон) в цилиндрическую вакуумную камеру, запертую магнитными пробками, точно выбрав направление, впрыскивают атомы, которые тормозятся в водородном газе и превращают его в горячую плазму. Удерживают ее магнитные поля сложной конфигурации. Чтобы не доводить дело до взрыва, термоядерная реакция должна протекать в малых дозах - в разреженной и очень нагретой дейтерий-тритиевой плазме Начальный этап работ характеризовался обилием идей и типов ловушек (пинчи, удержание высокочастотными полями, плазменные ускорители, способы нагрева плазмы и т. д.) К 1968 г. при омическом нагреве плазмы на токамаке Т-ЗА температуры электронов и ионов достигли 20 млн. и 4 млн. градусов соответственно - результат, в несколько раз превосходивший мировой уровень. В 1997 г., после завершения технического проекта реактора ИТЭР с термоядерной мощностью 1.5 ГВт, стороны решили изменить проект, чтобы сократить его стоимость с 8 до 4 млрд. долл.

Применение цепных ядерных реакций нашлось не только для создания ядерного оружия, но и для более "полезных целей". Вот примеры. Ядерная батарея (атомная) - блок источников электрического тока, работающих на энергии распада радиоактивных элементов. Мощность от нескольких Вт до нескольких сотен Вт. Используется на космических кораблях, в переносной аппаратуре. АЭС - это электростанция, на которой ядерная энергия преобразуется в электрическую. На АЭС тепло, выделяющееся в ядерном реакторе, используется для получения водяного пара, вращающего турбогенератор.
Атомные реакторы