Техническая механика Методика решения задач

Задача 3. Небольшое тело движется по окружности радиусом R со скоростью V=kt где k=const. Найти зависимость полного ускорения от времени.

На рисунке покажем полное ускорение тела и его составляющие.

 

 , 

.

Модуль тангенциального ускорения

.

Модуль нормального ускорения

.

Модуль полного ускорения

Ответ:

Задача 4. Найти величину углового ускорения лопатки турбины, расположенной на расстоянии R от оси вращения, через время t1 после пуска турбины. Зависимость линейной скорости лопатки от времени выражена уравнением  где a и b - постоянные коэффициенты. Найти число оборотов N2 через время t2 после пуска турбины. Принять j0=0.

Угловое ускорение

Используем связь угловой скорости с линейной:

.

Найдем зависимость углового ускорения от времени:

В момент времени

.

Угловая скорость

 

Выразив угол j через число оборотов (j=2pN2) и зная w как функцию времени, получим

Число оборотов лопатки

Ответ: ; .