Техническая механика Методика решения задач

Методика решения задач контрольной работы
Техническая механика
Кинематика
Основное уравнение динамики
Динамика вращательного движения
Определить положение центра тяжести сечения

Построить эпюру из изгибающих моментов

Физика примеры решения задач
Механические колебания
Математический маятник
Механическое движение и его относительность
Молекулярная физика и термодинамика
Диэлектрики в электрическом поле
Магнитное взаимодействие проводников с током
Найти индуктивность получившегося соленоида
Интерференция света и способы ее наблюдения
Определить кинетическую энергию
Электротехника
Общие указания к выполнению контрольной работы
Генератор постоянного тока
Первичной обмоткой трансформатора
Расчет параметров асинхронного двигателя
Электрические машины постоянного тока
Трансформаторы
Асинхронные электрические машины

Синхронные электрические машины

Примеры решения задач

Задача 1. По наклонной плоскости, образующей угол a с горизонтом, скатывается без скольжения 1) сплошной однородный диск, 2) шар. Определить линейное ускорение их центров. Предварительно вывести общую формулу.

Тело участвует в сложном движении:

1) поступательно движется вниз по наклонной плоскости; 2) вращается вокруг оси, проходящей через центр тяжести.

На рисунке покажем силы, действующие на тело.


Для поступательного движения запишем II закон Ньютона в проекциях на ось OX.

.  (1)

Для вращательного движения используем закон

,  (2)

где - момент инерции,  - угловое ускорение.

Момент силы создает сила трения, плечо которой равно R, две другие силы не создают вращающего момента.

.

Перепишем (2):

.

Выразим силу трения из (3) и подставим в (1):

Отсюда

 . (4)

Зная моменты инерции диска и шара

,

найдем ускорения диска и шара

,

Ответ: ,

Задача 2. Вертикальный столб высотой  подпиливается у основания и падает на землю, поворачиваясь вокруг основания. Определить линейную скорость его верхнего конца в момент удара о землю. Трением пренебречь.


На рисунке C- центр тяжести столба. Применим закон сохранения механической энергии. Масса распределена равномерно, поэтому в выражении для потенциальной энергии при вертикальном положении столба возьмем высоту его центра тяжести  относительно нулевого уровня отсчета: .

В горизонтальном положении столб приобретает кинетическую энергию

где J - момент инерции относительно оси, проходящей через неподвижный конец, w- угловая скорость.

. (1)

По теореме Штейнера

.

Угловую скорость выразим через линейную скорость упавшего конца:

.

Подставив  и  в (1), найдем

.

Ответ: .

Задача 3. Стержень массой  и длиной  может свободно вращаться вокруг неподвижной оси, проходящей через его верхний конец. Стержень отклоняют в горизонтальное положение и отпускают. Проходя через вертикальное положение, нижний конец стержня упруго ударяет о малую шайбу массой .

Определить скорость шайбы после удара.

Нулевой уровень отсчета потенциальной энергии проведем через центр тяжести стержня С при вертикальном положении стержня. Запишем закон сохранения механической энергии для стержня до удара.

  (1)

где ,   - угловая скорость стержня.

Для описания упругого соударения стержня с шайбой используем закон сохранения момента импульса

  (2)

и закон сохранения механической энергии

.  (3)

В уравнении (2) mVl- момент импульса шайбы. Напомним, что для материальной точки  У шайбы r = l,

Перепишем (2) и (3):

  ; (4)

. (5)

Разделив (5) на (4), найдем связь между  и :

.  (6)

Подставив (6) и  в (4), получим

.  (7)

Используем (2), тогда (7) примет вид

Ответ: